
TrajMesa: A Distributed NoSQL-Based Trajectory
Data Management System

Ruiyuan Li ,Member, IEEE, Huajun He , Rubin Wang , Sijie Ruan , Tianfu He , Jie Bao ,

Junbo Zhang ,Member, IEEE, Liang Hong ,Member, IEEE, and Yu Zheng , Fellow, IEEE

Abstract—With the development of positioning technology, a large number of trajectories have been generated, which are very useful

for many urban applications. However, it is challenging to manage trajectory data for its spatio-temporal dynamics and high-volume

properties. Existing trajectory data management frameworks suffer from efficiency or scalability problem, and support only limited

trajectory query types. This paper takes the first attempt to build a holistic distributed NoSQL trajectory query engine, named TrajMesa,

based on GeoMesa, an open-source indexing toolkit for spatio-temporal data. TrajMesa can manage a prohibitively large number of

trajectories, and support plenty of query types efficiently. Specifically, we first design a novel trajectory storage schema, which reduces

the storage size tremendously. We then devise a novel indexing key schema for time ranges, based on which ID (i.e., moving object

identifier) temporal query can be supported efficiently. To reduce the amount of retrieved trajectory data for a spatial range query,

we propose a position code to indicate the spatial location of trajectories accurately. We also propose a bunch of pruning strategies

for similarity query and k-NN query in the NoSQL environment. Extensive experiments are conducted using two real datasets and

one synthetic dataset, verifying the powerful query efficiency and scalability of TrajMesa. The results show that TrajMesa is about

100 � 1000 times faster than the state-of-the-art trajectory management frameworks in our experimental settings. TrajMesa is

currently deployed in JD company, processing over 1T trajectories of JD Logistics every day.

Index Terms—Trajectory data management, distributed NoSQL storage, spatio-temporal indexing and query processing

Ç

1 INTRODUCTION

WITH the proliferation of positioning technology, a large
number of trajectories have been generated. For exam-

ple, DiDi, the largest rider-sharing company in China, pro-
duces over 15 billion location points of 70TB data size per
day. As shown in Fig. 1, to utilize such huge trajectories,
various trajectory queries have been proposed: 1) ID Tempo-
ral Query, which retrieves the trajectories of a given moving
object within a specified time range, is used frequently in
package tracking services. For example, users would use

this type of query to check the status of their packages, i.e.,
where they are or when they will arrive. 2) Spatial Range
Query, which finds the trajectories travelling through a
given spatial range, can be used to discover reachable
areas [1] (A reachable area is an area that can be reached
from a given region within a specified time budget). In this
case, we retrieve the trajectories that have passed the query
region using spatial range query. The road segments cov-
ered by these trajectories form a reachable area. 3) Similarity
Query, which returns all trajectories similar to a given trajec-
tory, would help people to detect travelling companions [2]
and ride sharing [3]. For example, taxi companies can use
this type of query to find users with similar trajectories, and
recommend ride sharing services to them. And 4) k-NN
(Nearest Neighbour) Query, which finds k trajectories that are
most similar to a given trajectory, can be a building block
for trajectory clustering. For example, in the bike lane plan-
ning project [4], we first cluster trajectories based on k-NN
query, then identify the road segments with many trajecto-
ries traversed.

It is desirable for a scalable and unified trajectory query
engine to support all of these queries efficiently. Centralized
solutions, e.g., TrajStore [5] and Torch [6], are based on a
single machine, thus could not cope with such huge trajecto-
ries obviously. The distributed frameworks based on
MapReduce, e.g., [7], [8], [9], are designed for massive tra-
jectories, but they still face the efficiency problem, as they
may incur multiple disk I/Os even for a single job. Most
recently, many distributed in-memory trajectory data man-
agement frameworks, e.g, [10], [11], [12], [13], [14], [15],
have emerged. However, they suffer from three limitations.
First, these frameworks load all trajectories into memory.

� Ruiyuan Li is with the College of Computer Science, Chongqing University,
Chongqing 400044, China. E-mail: liruiyuan@cqu.edu.cn.

� Huajun He and Rubin Wang are with JD Intelligent Cities Research, Bei-
jing 100101, China, and also with Southwest Jiaotong University,
Chengdu 610032, China. E-mail: {hehuajun3, wangrubin3}@jd.com.

� Sijie Ruan is with JD Intelligent Cities Research, Beijing 100101, China,
and also with Xidian University, Xi’an 710071, China.
E-mail: ruansijie@jd.com.

� Tianfu He is with JD Intelligent Cities Research, Beijing 100101, China,
and also with the Harbin Institute of Technology, Harbin 150001, China.
E-mail: hetianfu3@jd.com.

� Jie Bao, Junbo Zhang, and Yu Zheng are with JD Intelligent Cities
Research, Beijing 100101, China. E-mail: baojie@jd.com, {msjunbozhang,
msyuzheng}@outlook.com.

� Liang Hong is with Wuhan University, Wuhan 430072, China.
E-mail: hong@whu.edu.cn.

Manuscript received 13 February 2020; revised 10 March 2021; accepted 26
April 2021. Date of publication 13 May 2021; date of current version 7 December
2022.
This work was supported in part by the National Key R&D Program of China
under Grant 2019YFB2101801 and in part by the National Natural Science
Foundation of China under Grant 61976168.
(Corresponding authors: Ruiyuan Li and Liang Hong.)
Recommended for acceptance by P. Pietzuch.
Digital Object Identifier no. 10.1109/TKDE.2021.3079880

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023 1013

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9149-3442
https://orcid.org/0000-0001-9149-3442
https://orcid.org/0000-0001-9149-3442
https://orcid.org/0000-0001-9149-3442
https://orcid.org/0000-0001-9149-3442
https://orcid.org/0000-0002-8915-5660
https://orcid.org/0000-0002-8915-5660
https://orcid.org/0000-0002-8915-5660
https://orcid.org/0000-0002-8915-5660
https://orcid.org/0000-0002-8915-5660
https://orcid.org/0000-0002-2009-7757
https://orcid.org/0000-0002-2009-7757
https://orcid.org/0000-0002-2009-7757
https://orcid.org/0000-0002-2009-7757
https://orcid.org/0000-0002-2009-7757
https://orcid.org/0000-0002-4520-7174
https://orcid.org/0000-0002-4520-7174
https://orcid.org/0000-0002-4520-7174
https://orcid.org/0000-0002-4520-7174
https://orcid.org/0000-0002-4520-7174
https://orcid.org/0000-0002-4988-4447
https://orcid.org/0000-0002-4988-4447
https://orcid.org/0000-0002-4988-4447
https://orcid.org/0000-0002-4988-4447
https://orcid.org/0000-0002-4988-4447
https://orcid.org/0000-0002-2346-7012
https://orcid.org/0000-0002-2346-7012
https://orcid.org/0000-0002-2346-7012
https://orcid.org/0000-0002-2346-7012
https://orcid.org/0000-0002-2346-7012
https://orcid.org/0000-0001-5947-1374
https://orcid.org/0000-0001-5947-1374
https://orcid.org/0000-0001-5947-1374
https://orcid.org/0000-0001-5947-1374
https://orcid.org/0000-0001-5947-1374
https://orcid.org/0000-0002-1466-9843
https://orcid.org/0000-0002-1466-9843
https://orcid.org/0000-0002-1466-9843
https://orcid.org/0000-0002-1466-9843
https://orcid.org/0000-0002-1466-9843
https://orcid.org/0000-0001-5262-9677
https://orcid.org/0000-0001-5262-9677
https://orcid.org/0000-0001-5262-9677
https://orcid.org/0000-0001-5262-9677
https://orcid.org/0000-0001-5262-9677
mailto:liruiyuan@cqu.edu.cn
mailto:hehuajun3@jd.com
mailto:wangrubin3@jd.com
mailto:ruansijie@jd.com
mailto:hetianfu3@jd.com
mailto:baojie@jd.com
mailto:msjunbozhang@outlook.com
mailto:msyuzheng@outlook.com
mailto:hong@whu.edu.cn

They require high-performance clusters withmuchmemory,
hence their scalability is limited. Second, for each query re-
quest, they need to scan the big indexes in memory, which
hurts query efficiency. Third, all of these frameworks only
support limited trajectory query types, therefore cannot su-
pport sophisticated urban applications. Distributed NoSQL
(Not Only SQL) data stores, such as Bigtable [16] and
HBase, are suitable for real-time read/write random access
to big data. However, due to lack of secondary indexes,
these NoSQL data stores do not natively support spatio-
temporal data management. GeoMesa [17] is an open-
source tool that manages large-scale spatio-temporal data
on the top of distributed NoSQL data stores. It transforms
multi-dimensional information into one-dimensional key.
However, GeoMesa cannot be applied to manage trajecto-
ries directly.

This paper is extended from our previous work [18]. To
the best of our knowledge, we are the first to build a holistic
distributed NoSQL trajectory query engine, TrajMesa [19],
based on GeoMesa. TrajMesa has three notable characteris-
tics: 1) Scalability. TrajMesa is based on distributed NoSQL
data stores, thus it requires little for clusters. It can manage
massive trajectories with limited cluster resources. 2) Effi-
ciency. We carefully design a novel storage schema and a set
of indexing techniques, thus it supports various trajectory
queries efficiently. It is even 100 � 1000 times faster than
the advanced in-memory trajectory data management
frameworks in our experimental settings. 3) Plenty of queries
support. TrajMesa supports various widely used trajectory
queries, including but not limited to: ID temporal query,
spatial range query, similarity query and k-NN query.1 The
contributions of this paper are summarized as follows:

1) We take the first attempt to build a holistic distrib-
uted NoSQL trajectory query engine based on Geo-
Mesa, in which a novel trajectory storage schema is
designed. It not only reduces the storage size tre-
mendously, but also supports various very useful
trajectory queries efficiently.

2) We devise a novel indexing key schema for time
ranges, based on which ID temporal query can be
supported efficiently. To reduce the amount of
retrieved trajectory data for spatial range query, we
innovatively propose a position code to indicate the
spatial location of trajectories accurately. We propose
multiple pruning strategies for similarity query and
k-NN query in the NoSQL environment.

3) Extensive experiments are conducted based on two
real datasets and one synthetic dataset, which veri-
fies the powerful query efficiency and scalability of
TrajMesa.

4) An online demo system is deployed and publicly
available in [19]. At present, TrajMesa is deployed in
JD,2 processing over 1T trajectories of JD Logistics
every day.

Outline. We give the preliminaries in Section 2. The
framework of TrajMesa is presented in Section 3. In Sec-
tions 4 and 5, we detail indexing & storing and query proc-
essing techniques of TrajMesa, respectively. We present the
evaluation results in Section 6, followed by the related
works in Section 7. Finally, we conclude this paper in
Section 8.

2 PRELIMINARY

This section gives related definitions, and introduces some
knowledge of GeoMesa to help understand our designs.

2.1 Definition

Definition 1. (GPS Point) A GPS point p ¼ ðlat; lng; tÞ con-
tains a latitude lat, a longitude lng, and a timestamp t.

Definition 2. (Trajectory) A trajectory tr ¼ fp1 ! p2 !
. . . ! png is a GPS point sequence ordered by timestamps.

tr:oid is the identifier of the moving object generating tr. jtrj
is the number of GPS points in tr. The minimum bounding
rectangle (MBR) tr:mbr is the smallest axis-aligned rectangle
that contains all locations of GPS points in tr; tr:ps and tr:pe
are the first and the last GPS point, respectively. Similarly,
tr:ts and tr:te are the start and end time, respectively.

Definition 3. (ID Temporal Query) Given a trajectory dataset
T , a moving object identifier oid, a temporal range R ¼ ½ts; te�,
ID temporal query returns all trajectories tri 2 T , where
tri:oid ¼ oid, and there exists at least one GPS point pj in tri
that is generated during R. Formally,

IDT queryðT ; oid;RÞ ¼ ftri 2 T j tri:oid ¼ oid^
9pj 2 tri; ts � pj:t � teg: (1)

The constraint “9pj 2 tri, ts � pj:t � te” can be rewritten
as “tri:ts � te ^ tri:te � ts”. It means if there is at least one
GPS point in a trajectory tr generated during ½ts; te�, then tr
should be returned.

Definition 4. (Spatial Range Query) Given a trajectory dataset
T , a spatial range S ¼ flatmin; lngmin; latmax; lngmaxg, spatial
range query returns all trajectories tri 2 T , where there exists
at least one GPS point pj in tri that is located in S. Formally,

SR queryðT ; SÞ ¼ ftri 2 T j 9pj 2 tri;

latmin � pj:lat � latmax ^ lngmin � pj:lng � lngmaxg: (2)

Definition 5. (Similarity Query) Given a trajectory dataset T ,
a query trajectory q, a distance function f , a threshold ", simi-
larity query finds all trajectories tri 2 T , where the distance

Fig. 1. Motivation for various trajectory queries.

1. TrajMesa also supports other useful trajectory queries, which can be
found inAppendix B on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2021.3079880 2. https://en.wikipedia.org/wiki/JD.com

1014 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

http://doi.ieeecomputersociety.org/10.1109/TKDE.2021.3079880
http://doi.ieeecomputersociety.org/10.1109/TKDE.2021.3079880

between q and tri is not greater than ". Formally,

Sim queryðT ; q; f; "Þ ¼ ftri 2 T j fðq; triÞ � "g: (3)

The distance function f measures the similarity of two tra-
jectories. This paper focuses on one of the most widely used
trajectory distance functions, i.e., Fr�echet distance [20] fF ,
whichmeasures theminimumdistance of all GPS point pairs
between two trajectories meanwhile considers the GPS point
order in a trajectory. Other euclidean space distance func-
tions, such as Hausdorff distance [21] and DTW [22], are also
supported by TrajMesa (See Appendix A), available in the
online supplemental material.

Suppose there are two trajectories Q ¼ hq1; q2; . . . ; qni and
tr ¼ hp1; p2; . . . ; pmi, Fr�echet distance is defined as

fF ðQ; trÞ ¼

max1�i�ndðqi; p1Þ m ¼ 1
max1�j�mdðq1; pjÞ n ¼ 1
maxfdðqn; pmÞ;minffF ðQn�1; trÞ;
fF ðQ; trm�1Þ; fF ðQn�1; trm�1Þgg others

8>><
>>:

;

(4)

where dðqi; pjÞ is the euclidean distance between two GPS
points qi and pj, and Qn�1 ¼ hq1; q2; . . . ; qn�1i and trm�1 ¼
hp1; p2; . . . ; pm�1i are the sub-trajectories of Q and tr,
respectively.

Definition 6. (k-NN Query) Given a trajectory dataset T , a
query position or a query trajectory q, a positive integer k, a dis-
tance function f , k-NN query returns a set of trajectories T 0 �
T , where jT 0j ¼ k, and for each tri 2 T 0, trj 2 T n T 0,
fðq; triÞ < fðq; trjÞ. Formally,

kNN queryðT ; q; f; kÞ ¼ ftri 2 T 0 j T 0 � T ^
jT 0j ¼ k ^ 8trj 2 T n T 0; fðq; triÞ < fðq; trjÞg: (5)

If q is a trajectory, f can be Fr�echet distance (or other
euclidean space-based distance), and it is called k-NN tra-
jectory query [11], [23]. If q is a point, f can be defined as
Equation (6), and it is entitled k-NN point query [10], [23].

fP ðq; trÞ ¼ min
pj2tr

dðq; pjÞ; (6)

where dðq; pjÞ is the euclidean distance between q and pj.

2.2 GeoMesa

GeoMesa [17] is an open-source tool, which manages large-
scale spatio-temporal data on the top of distributed NoSQL
data stores. Its main idea is to transform multi-dimensional
data into one-dimensional linear keys using space filling
curves [24]. Essentially, GeoMesa stores multiple copies of
data into different tables. With a carefully designed key,
each table can support several types of queries efficiently.
GeoMesa provides various indexing strategies with a com-
mon key combination

shardþ featureðOptionalÞ þ id;

where “þ” represents a concatenation operation, the same
with the remaining equations when we refer to key combi-
nation; shard is a random number to distribute data across
region servers for load balance; feature contains the spatial

or spatio-temporal information that are extracted from a
record; and id is the identifier of a record assigned by users
or generated randomly as UUID (Universally Unique Iden-
tifier). Among these three parts, shard and id are consistent
in all strategies, but feature is not the same. We introduce
some indexing strategies related to this paper here.

Z2 and XZ2 Indexing Strategies. Z2 and XZ2 are used to
support spatial-related queries efficiently. Z2 is for point
data, and its feature is Zðlng; latÞ, where Zð	; 	Þ is the Z-
ordering [25] function to project two-dimensional geograph-
ical coordinates onto one-dimensional data. As shown in
Fig. 2, this function partitions the spatial space into 4 sub-
spaces of equal size, which are numbered from 0 to 3. Each
sub-space is further partitioned recursively, until a certain
resolution is achieved. The obtained number sequence rep-
resents the position of a point. For example, in Fig. 2, point
p is transformed into “003”.

XZ2 is for non-point data (e.g., polygons or lines) based
on XZ-ordering [26], an extension of Z-ordering. Its feature
isXZ2ðlngmin; latmin; lngmax; latmaxÞ. It first extracts the MBR
of non-point data, whose left bottom corner determines a
sub-space r, and the width and height decide a proper reso-
lution. A proper resolution is that, the enlarged sub-space
of r (i.e., we fix the left bottom corner of r, and double its
width and height) just covers the data. As shown in Fig. 2,
line l is projected as “03”, as the enlarged sub-space of “03”
(marked as orange) covers line l, but the enlarged sub-space
of “032” cannot cover l.

Attribute Indexing Strategy. To speed up the queries by a
given attribute value (e.g., query trajectories according to
moving object identifiers), GeoMesa provides an attribute
indexing strategy. Here, feature consists of two parts

attrValþ 2ndTier;

where attrVal is the value of an attribute, followed by a zero
byte to mark its end. 2ndTier is a secondary index, which
can be one of other index keys, e.g., Z2 or XZ2. For more
details about the indexing strategies of GeoMesa, please
refer to [17], [19], [26], [27].

3 FRAMEWORK

Fig. 3 gives the framework of our proposed platform, Traj-
Mesa, which consists of three main modules: Preprocessing,
Indexing & Storing, and Query Processing.

Preprocessing. This module takes raw GPS points as input,
and performs three main tasks: 1) noise filtering, which
removes outlier GPS points that may be caused by the poor
signal of positioning systems; 2) stay point detection, which
identifies the locations where a moving object has stayed for a
whilewithin a certain distance threshold; and 3) segmentation,

Fig. 2. Z2 and XZ2.

LI ETAL.: TRAJMESA: A DISTRIBUTED NOSQL-BASED TRAJECTORY DATA MANAGEMENT SYSTEM 1015

which breaks a long trajectory into several meaningful short
trajectories, such as multipe trips of taxies. Trajectory prepro-
cessing is not only necessary for many urban applications,
e.g., [4], [28], but also very important for the selection of the
underlying storage schema and index building (see Section 4).
As this paper mainly focuses on the indexing and query proc-
essing, please refer to our previous work [29] for more details
about trajectory preprocesing.

Indexing & Storing. This module builds indexes for the
preprocessed trajectories, and stores the trajectory data into
the underlying data store of GeoMesa. Specifically, we gen-
erate two different keys that combine the spatio-temporal
attributes and other necessary information of a trajectory.
Each key and trajectory data forms a key-value pair, which
is then stored into the data store of GeoMesa. In other
words, we store two copies of a trajectory into two tables
with different keys (detailed in Section 4).

Query Processing.With the help of built indexes, TrajMesa
efficiently supports most useful trajectory queries, includ-
ing: ID temporal query, spatial range query, similarity
query, and k-NN query (detailed in Section 5).

4 INDEXING AND STORING

TrajMesa indexes and stores cleaned and segmented trajec-
tories. In this section, we first discuss the selection of under-
lying storage schema, which is vital for index building and
query processing. After that, we introduce the index techni-
ques for various trajectory queries. Note that we essentially
store two copies of trajectory data with different carefully
designed keys in different tables, as the disk storage cost is
much cheaper than the computing cost [30].

4.1 Storage Schema Selection

Vertical Storage Schema. One basic idea to store trajectories in
a key-value store is that, the trajectory data is stored with
each GPS point as one row, as most existing non-relational
trajectory management systems did [29], [30], [31], [32]. We
call this schema as vertical storage schema (V-Store). An
example of V-Store is given in Fig. 4a, where the value of
each point can be categorized into two parts:

(1) Spatio-temporal properties, which consists of the lati-
tude lat, longitude lng, and time t of this GPS point. They
are used to build the spatio-temporal indexes.

(2) Other properties, which includes the moving object
identifier oid that generates this point, the trajectory id tid
that this point belongs to, and other property readings.

V-Store regards each GPS point in a trajectory as an inde-
pendent entity, which leads to several drawbacks. 1) To fetch
a trajectory, we need to first retrieve all of its GPS points, then
group them by tid, and sort each group by t. This procedure
is time-consuming and slows down the query efficiency.
2) V-Store is unfit for trajectory queries, especially for similar-
ity query and k-NN query, as we can hardly know the full
information of a trajectory before we acquire all of its GPS
points. 3) The number of rows is equal to the number of GPS
points, which results in prohibitively numerous key-value
entries.More key-value entries needmore disk storage space,
which triggers more disk I/Os when retrieving the same
number of trajectories. This further hurts the query efficiency.

Horizontal Storage Schema. To address the aforementioned
issues, we propose a novel horizontal storage schema, i.e.,
H-Store, to store each trajectory in a single row. As shown in
Fig. 4b, the value of each entry contains four parts:

(1) Spatio-temporal properties, which includes the MBR
mbr, the start and end time ts and te, and the start and end
positions ps and pe of a trajectory.

(2) GPS point list. The GPS points in a trajectory are first
serialized using Kryo3 (a fast serializer that transforms data
into bytes, which is necessary for the following compres-
sion), and then compressed with GZip4 (a popular compres-
sor that achieves a good balance of compression ratio and
efficiency). This not only reduces the storage size tremen-
dously, but also improves the efficiency of storing and que-
rying by reducing disk I/Os.5

(3) Signature. In most scenarios, a trajectory only locates
in a very small part of its MBR. That is to say, the MBR of a
trajectory cannot represent its position exactly. To this end,
we design a signature, which provides finer-grained infor-
mation of the trajectory location. As shown in Fig. 4c, the
MBR of a trajectory is divided into a
 a disjoint regions
(i.e., signature regions) with equal size, and each region is
numbered. The signature is a binary sequence of a
 a bits.
If one or more GPS points of the trajectory are located in a
region, the corresponding bit is set to 1, otherwise set to 0. A
bigger a means a finer representation, but it requires more
storage space and more query complexity. Fig. 4c gives an
example of signature with a ¼ 4.

(4) Other properties. Like V-Store, we store the moving
object id oid, trajectory id tid, and other related properties.

Discussion. Most NoSQL data stores limit the maximum
storage size for each row by default. As the GPS point list of
a segmented trajectory would not be too long (this is one of
the reasons that we need the trajectory preprocessing proce-
dure before indexing & storing), it should be fit in a row in
most cases. Otherwise, TrajMesa would throw an exception.
One can also change or remove the size limitation. For
example, the limitation of HBase is set 10M by default, and
this limitation is configurable by hbase.client.key-

value.maxsize.
In the following, we will elaborate the design of keys for

each indexing table using H-Store in TrajMesa.

Fig. 3. Framework of TrajMesa.

3. https://github.com/EsotericSoftware/kryo
4. https://www.gzip.org/
5. More details about the selection of compression and serialization

methods can be found in Appendix C, available in the online supple-
mental material.

1016 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

4.2 ID Temporal Indexing

Main Idea. To efficiently support ID temporal query, Traj-
Mesa stores a copy of trajectory data with the key designed
based on attribute indexing strategy. The main idea is to
keep the trajectory data of the same moving object at adja-
cent time together as much as possible.

Challenges. Recall that the key of attribute indexing strat-
egy is shardþ attrValþ 2ndTierþ id, where attrVal can be
set as the moving object id oid, and id is set as the trajectory
id tid. To support a temporal paradigm, one may simply
replace 2ndTier by the start time ts (or end time te) of a tra-
jectory. However, there could be some results missing if we
only encode ts (or te). As shown in Fig. 5a, suppose the time
range of a query q is ½tqs; tqe�, when ts < tqs, a qualified tra-
jectory will be overlooked. Note that we retrieve trajectories
if only part of their GPS points located in the given temporal
range. One of the challenges is how to index time ranges
using one-dimensional keys.

Solution. Although interval tree [33] allows to efficiently
find all intervals that overlap with a given interval, how-
ever, it requires to maintain a tree structure, which is not fit
for the NoSQL environment. XZ2 indexing strategy [26]
projects spatial ranges onto one-dimensional keys to sup-
port spatial range queries. Inspired by XZ2, we propose
XZT (eXtended Z-ordering for Time range) to support time
range queries by projecting time ranges onto one-dimen-
sional keys. The main idea of XZT is to find an ordered and
unique key for each trajectory time span. Before drilling in
the details, we first give some related definitions.

Definition 7. (Element) A time range E ¼ ½ts; te� is called an
element, whose length is defined as Dt ¼ te � ts.

Definition 8. (XElement) The extended element (XElement) of
E ¼ ½ts; te� is XE ¼ ½ts; te þ Dt�, where Dt ¼ te � ts. Note
that the length ofXE is twice of the length of E.

As there is no limit for the time dimension, we divide the
time line into disjoint time period bins (e.g., one day or one
year). For each bin, we encode the time ranges whose start
time locates in this bin. Specifically, as shown in Fig. 5b, the
key of element E ¼ ½ts; te� consists of two parts:

(1) Bin Num. It indicates which time period bin that ts
locates in, defined by Equation (7).

BinðtsÞ ¼ bðts �RefTimeÞ �BinLenc; (7)

where ts is the start time of E, RefTime is the reference time
(e.g., 1970-01-01T00:00:00Z), and BinLen is the number of
seconds in a time period bin. We use two bytes to store the
Bin Num, as it can represent at least 216=365 � 180 years
when BinLen is 1 day, which satisfies most cases.

(2) Element Code. It represents the offset of E in its time
period bin, denoted by CðEÞ. There are two steps to get the
element code: Sequence Calculation and Code Generation.

� Sequence Calculation. This step gets a binary sequence
S ¼ hs0; s1; . . . ; sl�1i in a way similar to binary search. As
shown in Fig. 5c, we recursively find a line segment L ¼
½tls; tle� in bin BinðtsÞ ¼ ½tbs; tbe� to represent E ¼ ½ts; te�. If ts
locates in the left half part of the search space, we append 0
to S; otherwise, we append 1. This procedure is terminated
when at least one of the following conditions is not met.

tls � ts ^ tle þ Dt � te ðIÞ
jSj < g ðIIÞ

�
: (8)

Condition (I) guarantees that the XElement of L, i.e.,
½tls; tle þ Dt�, just fully contains the time range E (i.e., if we
further equally split L into two line segments L1 and L2, nei-
ther of the XElements of L1 and L2 can fully contain E).
Condition (II) means that the length of S is not greater than
a user specified constant g, which avoids an overlong
sequence. Algorithm 1 gives the pseudo-code, which is self-
explanatory. Note that we may append an extra bit to S, as
the last line segment may do not meet condition (I). We
should remove it as shown in Line 8-9.

Algorithm 1. Sequence Calculation

Input: Element E ¼ ½ts; te� to be indexed, time period bin
BinðtsÞ ¼ ½tbs; tbe�, max sequence length g.

Output: Sequence S ¼ hs0; s1; . . . ; sl�1i.
1: S ¼ hi; tls ¼ tbs; tle ¼ tbe; tc ¼ ðtls þ tleÞ=2;
2: while ðtls � ts ^ tle þ Dt � teÞ ^ jSj < g do
3: if ts < tc then
4: S:appendð0Þ; tle ¼ tc;
5: else
6: S:appendð1Þ; tls ¼ tc;
7: tc ¼ ðtls þ tleÞ=2;
// The last may do not meet condition (I)

8: if tls > ts _ tle þ Dt < te then
9: S:removeLastðÞ;
10: return S;

Fig. 4. Storage schema selection.

Fig. 5. Techniques of ID temporal indexing.

LI ETAL.: TRAJMESA: A DISTRIBUTED NOSQL-BASED TRAJECTORY DATA MANAGEMENT SYSTEM 1017

Example. As shown in Fig. 5c, suppose BinðtsÞ ¼ ½0; t�, the
XElement of line segment ½t=4; t=2� (i.e., ½t=4; 3t=4�) contains
½ts; te�, but the XElement of ½t=4; 3t=8� (i.e., ½t=4; t=2�) does
not. Hence, the sequence of ½ts; te� is “01”.

� Code Generation. This step generates a long integer code
from the binary sequence, according to Equation (9). It can
be regarded as a process of converting binary to decimal.

CðSÞ ¼
Xl�1

i¼0

si
 ð2g�i � 1Þ þ 1: (9)

Discussion. XZT requires that, the time range E to be
indexed should be within the XElement of a line segment in
a time period bin. To this end, XZT could not index a time
range whose length is greater than the bin. If so, we cannot
find a sub-time range in a bin whose XElement fully con-
tains E, and TrajMesa would throw an exception. Fortu-
nately, as most segmented trajectories would be no longer
than one day (this is another reason that we preprocess tra-
jectories), we can easily select an appropriate time period.

Summary. In summary, the key of ID Temporal Indexing
Table is shown as Fig. 6.

4.3 Spatial Range Indexing

Main Idea.We build Spatial Range Indexing Table for spatial
range query, similarity query and k-NN query based on
XZ2 indexing strategy, which encodes the spatial informa-
tion into a linear key. The main idea is to store spatially
close trajectories together as much as possible.

Challenges. Recall that the key in XZ2 indexing strategy is
shardþXZ2þ id, where id can be set as the trajectory id
tid. However, XZ2 cannot represent the spatial location of
trajectories exactly. As shown in Fig. 7a, XZ2 indexing strat-
egy uses 03 to represent the trajectory tr, because the XEle-
ment of 03 (marked orange, the concepts are borrowed from
Definitions 7 and 8 but with two dimensions in this case)
just covers tr. However, the XElement of 03 is too big for tr,
as tr only crosses a small portion of it. To this end, it is nec-
essary to design a more accurate encoding method to indi-
cate the spatial location of trajectories.

Solution. This paper proposes XZ2þ to hash out the
aforementioned issue. As shown in Fig. 7b, the keys gener-
ated byXZ2þ consist of two parts:

(1) XZ2. This part is generated based on XZ-ordering [26].
It is a long integer which is converted from the non-point

data. In Fig. 7a, the XZ2 is 03 (note that this is a quaternary
number).

(2) PosCode (position code). We divide the XElement into
b
 b disjoint areas of equal size, and each area is num-
bered. Then the spatial location of a trajectory tr is indicated
by b
 b bits. If at least one GPS point of tr locates in an
area, the corresponding bit is set 1, otherwise set 0. Fig. 7c
gives the PosCode of tr in Fig. 7a with b ¼ 2.

Discussion. Note PosCode is not the same as the trajectory
signature. Trajectory signature is based on the MBR of a tra-
jectory, but PosCode is based on the XElement. Here, a big-
ger b means a more accurate spatial location representation,
but it results in more storage space and may damage the
query efficiency (see Section 5 for details). In our implemen-
tation, we set b ¼ 2.

Summary. In summary, the key of Spatial Range Indexing
Table is shown as Fig. 8.

5 QUERY PROCESSING

With the carefully designed indexes, TrajMesa efficiently
supports various useful queries. Most of these queries fol-
low a common three steps: 1) query window generation, which
generates multiple query windows by given query para-
digms; 2) query execution, which executes trajectory queries
in parallel; 3) result refinement, which removes unsatisfied or
duplicated trajectories and returns final results.

5.1 ID Temporal Query

Query Window Generation. Recall that the key of ID Temporal
Indexing Table is shardþ oidþBinNumþ ElementCodeþ
tid. Given an ID temporal query q with a time range ½tqs; tqe�
and a moving object id oid, this step is further divided into
five substeps:

(1) shard generation, which enumerates all possible val-
ues of shard.

(2) oid generation, which combines the query moving
object id with a zero byte that marks the end of object id. It
is obviously unique when an ID temporal query is given.

(3) BinNum generation, which finds a list of time period
bins whose XElement are overlapped with ½tqs; tqe�. We cal-
culate the bins where tqs and tqe locate according to Equa-
tion (7). Suppose bm ¼ BinðtqsÞ and bn ¼ BinðtqeÞ, then the
bins bi, m� 1 � i � n, are selected. Note that bin bm�1 is
also qualified, because there could be trajectories whose
time spans are overlapped with ½tqs; tqe�, e.g., the trajectory
tr shown in Fig. 9. The trajectories in other bins would not
be qualified.

Fig. 6. Key of ID indexing table.

Fig. 7. Techniques ofXZ2þ.

Fig. 8. Key of spatial range indexing table.

Fig. 9. Bin selection.

1018 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

(4) ElementCode generation. Essentially, we find an ele-
ment ½tls; tle� to represent the time range ½ts; te� of a trajectory
during the process of indexing. In this step, for each quali-
fied element ½tls; tle� in a time bin, we calculate the element
code range ½min;max� of all its sub-elements, where min ¼
Cð½tls; tle�Þ and max ¼ Cð½tle �BinLen=2g; tle�Þ, as shown in
Fig. 10a. Here, g is the max sequence length, and BinLen=2g

is the time span of an element with a sequence length of g.
This step is to find all elements in a time bin that overlap
with the query time range ½tqs; tqe�.

Algorithm 2 presents the pseudo-code of ElementCode
generation, which consists of three main parts:

� Initialization (Line 1). R records the qualified element
code ranges, and l records the sequence length of the ele-
ments to be checked (it also represents check level). We use
a first-in-first-out queue que to help the check process in a
breath-first order. Flag represents the end of a level.

Algorithm 2. ElementCode Generation in a Bin

Input: Query time range ½tqs; tqe�, BinðtqsÞ ¼ ½tbs; tbe�.
Output: A list of ElementCode rangesR.
1: R ¼ ;; l ¼ 0; que:pushð½tbs; tbe�Þ; que:pushðFlagÞ;
2: while l < g ^ que 6¼ ; do
3: cur ¼ que:popðÞ;
4: if cur ¼ Flag then
5: l ¼ lþ 1; que:pushðFlagÞ; continue;
6: ½tls; tle� ¼ cur; Dt ¼ tle � tls;
// XElement of cur is contained

7: if tls � tqs ^ tle þ Dt � tqe then
8: R:addðCodeRangeðtls; tle; falseÞÞ;

// XElement of cur is overlapped

9: else if tls � tqe ^ tle þ Dt � tqs then
10: R:addðCodeRangeðtls; tle; trueÞÞ;
11: tlc ¼ ðtls þ tleÞ=2;
12: que:pushð½tls; tlc�Þ; que:pushð½tlc; tle�Þ;

// Processing remaining elements in que
13: while que 6¼ ; do
14: cur ¼ que:popðÞ;
15: if cur 6¼ Flag then
16: ½tls; tle� ¼ cur;
17: R:addðCodeRangeðtls; tle; falseÞÞ;
18: returnR;

� Recursive Check (Line 2-12). For each element cur in que,
we check the relation of its XElement Xcur with ½tqs; tqe�.
There are three cases: 1) If Xcur is contained in ½tqs; tqe�, we
get a code range that represents all sub-elements of cur, and
add it to R (Line 7-8); 2) If Xcur is overlapped with ½tqs; tqe�,
we add the code that exactly stands for cur to R. Besides,
we add the two children of cur to que for further test
(Line 9-12); 3) If Xcur does not intersect with ½tqs; tqe�, we do
nothing. When the maximum resolution is reached or que is
empty, the recursive check process is terminated.

� Remaining Check (Line 13-17). We process the remaining
elements in que if it is not empty (Line 13-17).

Function CodeRange (Algorithm 3) returns the code
range of ½tls; tle�. part indicates whether it returns a code
range of all sub-elements or that of the exact ½tls; tle�.

Algorithm 3. Function CodeRangeðtls; tle; partÞ
1: min ¼ Cð½tls; tle�Þ;
2: if part ¼ true then
3: max ¼ min;
4: else
5: max ¼ Cð½tle �BinLen=2g; tle�Þ;
6: return ½min;max�;

Example. Fig. 10b gives an example of code range genera-
tion, where BinðtqsÞ ¼ ½0; t� and g ¼ 2. The qualified ele-
ments (whose XElement is contained in or overlapped with
the query time range) are checked.

(5) Query window combination. We combine shard, oid,
BinNum, and code ranges into query windows, whose
number is Nshard

PNbin�1
i¼0 Nrange

i . Nshard and Nbin are the
number of shard values and qualified bins, respectively,
andNrange

i is the number of code ranges in bin bi.
Query Execution. TrajMesa triggers SCAN operations over

the underlying data store in parallel, where each query win-
dow is transformed into an execution.

Result Refinement. Due to the limitation of max
sequence length, there could be unqualified trajectories
retrieved. Consequently, when all SCAN operations are
finished, we collect the results and remove the unsatisfied
trajectories.

5.2 Spatial Range Query

Query Window Generation. Spatial range query is based on
Spatial Range Indexing table, whose keys follow a pattern
of shardþXZ2þ PosCodeþ tid. The query window gener-
ation step is further divided into four substeps:

(1) shard generation, the same with ID temporal query.
(2) Spatial key range generation. This step generates a list

of key ranges by the given spatial range query q, which is
similar to Algorithm 2 but extended to two dimensions [26].
As shown in Fig. 11a, we recursively check the XElement
Xe of an element e in a top-down fashion. If Xe is contained
in q, we generate a key range that includes all elements in e.
If Xe overlapped with q, we generate a key range that
exactly represents e, and further check the four children of e
until the max resolution is reached. If Xe does not intersect
with q, we do nothing. All qualified elements (whose

Fig. 10. Code range of sub-elements.

Fig. 11. Spatial range and similarity queries.

LI ETAL.: TRAJMESA: A DISTRIBUTED NOSQL-BASED TRAJECTORY DATA MANAGEMENT SYSTEM 1019

XElement is contained in or overlapped with q) in Fig. 11a
are marked green.

(3) PosCode generation. As shown in Fig. 11a, tr2 is not
overlapped with q, thus it should not be retrieved. PosCode
is proposed to address this issue. As mentioned in Sec-
tion 4.3, we divide an XElement into b
 b disjoint areas,
which can be represented by a sequence of b
 b bits B. For
each XElement of a qualified element e, if q intersects with
the ith area, then B½i� ¼ 1, otherwise B½i� ¼ 0. A PosCode of
element emust satisfy Equation (10)

PosCodeðeÞ&B 6¼ 0; (10)

where & means bitwise AND operation. For each qualified e,
we generate all of its satisfied PosCodes, whose number is
between 2b
b�1 (if q intersects with only one area) and
2b
b � 1 (if q intersects with all areas). To this end, b should
not be set too large (b ¼ 2 in our implementation).

Example. As shown in Fig. 11a, q intersects with the sec-
ond area of the XElement of 03, thus B ¼ 0010. We enumer-
ate all numbers from 0000 to 1111, finding the following 8
PosCodes that satisfy Equation (10): 0010; 0011; 0110; 0111;
1010; 1011; 1110, and 1111.

(4) Query window combination. It combines shard, key
ranges, and PosCodes into query windows, whose number
is Nshard

PNe�1
i¼0 NPosCode

i , where Nshard and Ne are the
number of shard values and qualified elements, respec-
tively, and NPosCode

i is the number of PosCodes of ei.
Query Execution. Similar to ID temporal query, but we use

the Spatial Range Indexing table in this case.
Result Refinement. Similar to ID temporal query, but we

refine trajectories by the given spatial range.

5.3 Similarity Query

Similarity query follows a filtering-refinement framework.
In filtering step, we get a candidate trajectory set based on
spatial range queries. In refinement step, we check the real
similarity, and get the final result.

Trajectory Filtering. Similarity query regards spatial
range query as a building block. As shown in Fig. 11b,
given a query trajectory q with a distance threshold "
(we would transform " from km to coordinate degree),
we get two spatial ranges R1 ¼ flat1 � "; lng1 � "; lat1 þ
"; lng1 þ "g and R2 ¼ flatn � "; lngn � "; latn þ "; lngn þ "g,
where ðlat1; lng1Þ and ðlatn; lngnÞ are the start and end
points of q, respectively. All similar trajectories should
be contained in the spatial range query result T 0 ¼
SR queryðT ; R1Þ \ SR query ðT ; R2Þ in terms of Fr�echet
distance fF .

Lemma 1. All similar trajectories of q are in T 0 in terms of
Fr�echet distance fF .

Proof.We first prove that all similar trajectories of q are con-
tained in T 1 ¼ SR queryðT ; R1Þ. Suppose 9tr, fF ðtr; qÞ �
", but tr =2 T 1. As tr =2 T 1, all points of tr are out of R1.
Consequently, fF ðtr; qÞ � minpi2trdðpi; q:psÞ > ", which
conflicts with our hypothesis.

Similarly, we can prove that all similar trajectories of q
are contained in T 2 ¼ SR queryðT ; R2Þ. To this end, all
similar trajectories of q are contained in T 0 ¼ T 1 \ T 2. tu

Result Refinement. After retrieving a candidate trajectory
set T 0 using spatial range query, it requires to refine it by
checking whether fðtr; qÞ � " for all tr 2 T 0. However, the
complexity of fF is Oðjtrj
 jqjÞ, which is time-consuming.
Therefore, this paper proposes three types of pruning strate-
gies, all of which can be calculated in Oð1Þ.

(1) MBR Pruning. Given a query trajectory q with a
threshold ", where q:mbr ¼ flatmin; lngmin; latmax; lngmaxg,
we get a spatial range S ¼ flatmin � "; lngmin � "; latmax þ
"; lngmax þ "g. The MBRs of all similar trajectories should be
fully contained in S according to Lemma 2.

Lemma 2. If the MBR of tr is not fully contained in S, i.e., there
is at least one GPS point p of tr falling outside S, then tr would
not be similar to q in terms of Fr�echet distance fF .

Proof. Suppose 9tr, fF ðtr; qÞ � ", but 9p 2 tr, p is out of S.
As p is out of S, fF ðtr; qÞ � minqi2qdðp; qiÞ > ", i.e., tr is
not similar to q, which conflicts with our hypothesis. tu

(2) SEP_LB. We propose a lower bound based on the start
and end points of two trajectories.

SEP LBfF ðq; trÞ ¼ maxfdðq:ps; tr:psÞ; dðq:pe; tr:peÞg:
(11)

Lemma 3. If SEP LBfF ðq; trÞ > ", then fF ðq; trÞ > ".

Proof. fF ðq; trÞ � maxfdðq:ps; tr:psÞ; dðq:pe; tr:peÞg ¼ SEP
LBfF ðq; trÞ > ". tu

(3) SIG_LB. As introduced in Section 4.1, trajectory signa-
tures indicate the finer information of trajectory locations,
based on which a signature lower bound is proposed.

SIG LBfF ðq; trÞ ¼ maxf max
rq2SigðqÞ

min
rtr2SigðtrÞ

dðrq; rtrÞ;

max
rtr2SigðtrÞ

min
rq2SigðqÞ

dðrtr; rqÞg; (12)

where rq 2 SigðqÞ is a signature region of trajectory q,
dðrq; rtrÞ is the region distance between rq and rtr, which is
calculated by Equation (13).

dðrq; rtrÞ ¼ min
pi2rq;pj2rtr

dðpi; pjÞ: (13)

We also define the distance between a point p and a region r
as the minimum distance between p and any point p0 2 r.

dðp; rÞ ¼ min
p02r

dðp; p0Þ: (14)

Lemma 4. If SIG LBfF ðq; trÞ > ", then fF ðq; trÞ > ".

Proof. For points qi 2 q and pj 2 tr, they must locate in sig-
nature regions riq and rjtr, respectively. So we have

fF ðq; trÞ � max max
qi2q

min
pj2tr

dðqi; pjÞ;max
pj2tr

min
qi2q

dðpj; qiÞ
� �

�

max max
qi2q

min
rtr2SigðtrÞ

dðqi; rtrÞ;max
pj2tr

min
rq2SigðqÞ

dðpj; rqÞ
� �

�

max max
rq2SigðqÞ

min
rtr2SigðtrÞ

dðrq; rtrÞ; max
rtr2SigðtrÞ

min
rq2SigðqÞ

dðrtr; rqÞ
� �

¼ SIG LBfF ðq; trÞ > ": tu

1020 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Algorithm 4. k-NN Point Query

Input: Query point q, result count k, max resolution g.
Output: A set of trajectories T knn.
1: Initial a priority queue cdq with a max size k, whose ele-

ments tr are ordered by fP ðq; trÞ of Equ. (6);
2: Initial a priority queue req with whole spatial region, whose

elements r are ordered by dðq; rÞ of Equ. (14);
3: dmax ¼ 0; checked ¼ ;;
4: while req is not empty do
5: r ¼ req:popðÞ;
6: if cdq:sizeðÞ ¼ k ^ dðq; rÞ > dmax then
7: break; // Pruning I: Region Pruning

8: if the resolution of r < g then
9: Add the four children of r to req; continue ;
10: T SR ¼ SR queryðT ; r);
11: foreach tr 2 T SR do
12: if tr:tid in checked then
13: continue;
14: checked ¼ checked [ftr:idg;
15: if cdq:sizeðÞ ¼ k ^ LBfP ðq; trÞ > dmax then
16: continue; // Pruning II: LB Pruning

17: Add tr to cdq; dmax ¼ fP ðq; cdq:lastðÞÞ;
18: return cdq as T knn;

The calculation time complexity of SIG_LB is Oða2Þ, but
a jqj and a jtrj. We set a ¼ 4 in our implementation.

If one of above lower bounds is greater than ", we can
safely stop the calculation of trajectory distance, which
accelerates similarity queries tremendously.

5.4 k-NN Query

k-NN query is categorized into k-NN point query [10] and
k-NN trajectory query [11]. We first elaborate k-NN point
query in TrajMesa, then extend it to k-NN trajectory query.

k-NN Point Query. The main idea of k-NN point query is
to iteratively expand the query spatial range in an inner-
outer fashion, until the k most similar trajectories are found.
We propose two pruning strategies to stop the expansion
process as early as possible. Algorithm 4 presents k-NN
point query, which contains two steps:

(1) Initialization (Line 1-3). Here, cdq is a priority
queue that stores candidate trajectories; req is another
priority queue to record the regions to be queried; dmax

is the currently maximum distance between q and the
trajectories in cdq; and checked records the trajectory IDs
that we have already checked, which avoids redundant
computation.

(2) Expansion (Line 4-17). This step pops a region r from
req. If there are k trajectories in cdq and the distance between
q and r is greater than dmax, the query process is terminated
(Lemma 5, denoted as Region Pruning). If the resolution of r
is smaller than g, we add its children to req and continue to
check next region. Otherwise, we trigger a spatial range
query by r. For each trajectory tr 2 T SR, before calculating
its real distance to q (which is time-consuming), we first
check if it has been checked in an “inner” iteration. If the
answer is “yes”, we simply omit it. Otherwise, we add it to
checked, and use a lower bound pruning strategy (Lemmas 6
and 7, denoted as LB Pruning). If tr is satisfied with all lower
bounds, we add it to cdq, and update dmax.

Lemma 5. If dðq; rÞ > dmax, then fP ðq; trÞ > dmax, where tr is
any trajectory queried by r but not retrieved before.

Proof. If tr has already been retrieved as it crosses an
“inner” region, it should have been checked. If tr has not
been retrieved, we have: fP ðq; trÞ ¼ minpj2tr dðq; pjÞ
�minpj2tr:mbrdðq; pjÞ �minpj2rdðq; pjÞ ¼ dðq; rÞ > dmax. tu

Lemma 6. If MBR LBfP ðq; trÞ ¼ dðq; tr:mbrÞ > dmax, then
fP ðq; trÞ > dmax.

Proof. fP ðq; trÞ ¼ minpj2tr dðq; pjÞ � minpj2tr:mbr dðq; pjÞ ¼
dðq; tr:mbrÞ > dmax. tu

Lemma 7. If SIG LBfP ðq; trÞ ¼ minrtr2SigðtrÞdðq; rtrÞ > dmax,
then fP ðq; trÞ > dmax.

Proof. fP ðq; trÞ ¼ minpj2trdðq; pjÞ � minpj2tr:mbrdðq; pjÞ �
minrtr2SigðtrÞdðq; rtrÞ ¼ SIG LBfP ðq; trÞ > dmax. tu

Example. Fig. 12a gives an example of k-NN point query,
where the critical steps are shown in Fig. 12b.

k-NN Trajectory Query. The procedure of k-NN trajectory
query is similar to that of k-NN point query, but with the
following three differences.

(1) The elements of cdq and req are ordered by fF ðq; trÞ
and Equation (15), respectively.

Region LBfF ðq; rÞ ¼ max
qi2q

dðqi; rÞ: (15)

(2) We use Equation (15) to perform Region Pruning,
whose correctness can be guaranteed by Lemma 8.

Lemma 8. If Region LBfF ðq; rÞ > dmax, then fF ðq; trÞ >
dmax, where tr is a trajectory queried by r but not retrieved
before.

Proof. If tr has already been retrieved, it should have been
checked. If tr has not been retrieved, we have: fF ðq; trÞ �
maxfmaxqi2q minpj2trdðqi; pjÞ;maxpj2tr minqi2qdðpj; qiÞg
�maxfmaxqi2q minpj2tr:mbrdðqi; tr:mbrÞ;maxpj2tr:mbr minqi2qd
ðtr:mbr; qiÞg � maxfmaxqi2qminpj2rdðqi; pjÞ; maxpj2rminqi2q
dðpj; qiÞg � maxqi2qminpj2rdðqi; pjÞ ¼ maxqi2qdðqi; rÞ ¼
Region LBðq; rÞ > dmax. tu

(3) We use the lower bounds proposed in Section 5.3 to
perform LB Pruning for k-NN trajectory query.

6 EXPERIMENTS

6.1 Datasets & Settings

Datasets. We use three datasets to evaluate the performance
of TrajMesa: 1) T-Drive [34], which includes taxi trajectories
of Beijing, China from 2008-02-02 to 2008-02-08; 2) Lorry,
which contains JD logistic lorry trajectories of Guangzhou,
China from 2014-03-01 to 2014-03-31; and 3) Synthetic, which

Fig. 12. Example of k-NN Query (k ¼ 3 and g ¼ 2).

LI ETAL.: TRAJMESA: A DISTRIBUTED NOSQL-BASED TRAJECTORY DATA MANAGEMENT SYSTEM 1021

is generated by copying Lorry dataset up to 1T to test the
scalability of TrajMesa. Their statistics are shown in Table 1.
Note that the max time span of trajectories in the two real
datasets are 35:5h and 43:5h, respectively, both of which are
greater than 1 day. To this end, we cannot use 1 day as the
time period bin in ID Temporal Indexing table.

Settings. Table 2 summarizes the parameters, where the
default values are in bold. The max sequence length g is set
as 16 (about 1km
 1km), as this is a common resolution of
spatial range query in many urban applications. Table 3
gives the softwares and their versions. We use Spark to pre-
process trajectories, and HBase as the underlying NoSQL
data store of GeoMesa. To eliminate the effect of HBase
cache,6 we randomly select 100 different query parameters,
perform each query only once, and take the median of all
queries as the final results. All experiments are conducted
on a cluster of 5 nodes, with each node equipped with Cen-
tos 7.4, 8-core CPU, 32 GB RAM, and 1T disk.

Baselines. We compare TrajMesa (i.e., TM) with six base-
lines, as shown in Table 4, where their supported queries
are marked. Among these baselines, STH [7] (i.e., ST-
Hadoop) is an advanced disk-based trajectory management
system, and Dita [12] and DFT [11] are state-of-the-art in-
memory trajectory management platforms (we obtain the
source code from their authors, and run these systems in
our experimental environment. Other systems, e.g., [10],
[35], are not compared as we cannot get their source codes).
TMV , TMnlb, and TMnps are the variants of TM.

� TMV adopts V-Store as the underlying storage schema.
Note that we retrieve trajectories if PART of their GPS

points locate in a given spatial/temporal range. As a result,
TMV does not directly support the queries proposed in this
paper. To achieve ID temporal query and spatial range
query, we first get the trajectory IDs in a given temporal/
spatial range, then retrieve all GPS points for each qualified
trajectory ID. In this storage schema, we also store two cop-
ies of data with carefully designed spatio-temporal keys.

� TMnlb does not apply lower bound pruning techniques
to spatial range query and k-NN query.

� TMnps does not adopt PosCode in Spatial Range Index-
ing table.

In this paper, we only present fF -based results for simi-
larity query and k-NN query, because both Dita and DFT
support it, as well as the limitation of pages. The experimen-
tal results of parameter tuning (e.g., a;b) can be seen in
Appendix C, available in the online supplemental material.
More results can be found in our technical reports [19].

6.2 Performance of Storage

Figs. 13a and 13b compare the storage sizes of different stor-
age schemas when varying the trajectory data size. Note
that the storage size includes both ID temporal indexing
table and spatial range indexing table. There are two obser-
vations: 1) the storage size gets linear growth with an
increasing of trajectory data size for both H-Store and V-
Store, because it needs more storage space when the data
gets larger; 2) V-Store takes up about 5 times of storage
space than H-Store for both datasets, because H-Store stores
the GPS points in a trajectory together, and can compress
the GPS point data more easily. It is also interesting to see
that the storage size of H-Store is even much smaller than
the raw data size, although we store two copies of data.
This owes to the compression mechanism of H-Store.

Figs. 13c and 13d show the storing time of V-Store and H-
Store with different data sizes. It shows that with more data,
the storing time of both storage schemas increases, as we
need to process more data. V-Store takes much more time
than H-Store. There are two main reasons. First, V-Store
stores much more key-value entries than H-Store. More
key-value entries means more operations over the underly-
ing NoSQL data store. Second, the storage data size of H-

TABLE 1
Statistics of Datasets

Attributes #Points #Objects Size Rate #Traj. Max Span

T-Drive 17,662,984 10,366 752MB 177s 314,086 35.5h
Lorry 886,593,200 48,813 136GB 20s 7,280,994 43.5h
Synthetic 8,865,932,000 488,130 1360GB 20s 72,809,940 43.5h

TABLE 2
Parameter Settings

Parameters Settings

Data Size (%) 20, 40, 60, 80, 100
Time Range 1h, 6h, 1d, 1w, 1m, 2m, 3m
Spatial Range (km2) 1
 1, 2
 2, 3
 33
 3, 4
 4, 5
 5
k 50, 100, 150, 200, 250
" (km) 1, 2, 3, 4, 5
Time Period 1 week, 1 month, 1 year

TABLE 3
Softwares in the Experiments

Software Version Software Version Software Version

Hadoop 2.7.6 GeoMesa 2.3.0 JDK 1.8
Spark 2.3.3 HBase 1.4.9 Scala 2.11

TABLE 4
Supported Queries of Comparing Methods

Queries STH Dita DFT TMV TMnlb TMnps

IDT

 p	 √ √
SR √ √
 p	 √ √
SimfF
 √

 √ √
k-NNfF
 √ √
 √ √
k-NNfP

 √ √

6. HBase caches results in memory to expedite same queries.

1022 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Store is much smaller than V-Store. For the same dataset,
smaller storage size triggers less disk I/Os.

6.3 Performance of ID Temporal Query

Different Data Sizes.We compare the ID temporal query time
of TM and TMV with different data sizes (TMnlb and TMnps

are not tested, because they use the same ID indexing table
with TM). As shown in Figs. 14a and 14b, TM is much faster
than TMV . Because for the same data size, the storage space
of TM is much smaller than that of TMV , which leads to less
disk I/Os. We can also observe that the ID temporal query
time of TM is not affected by the data size, because TM
directly locates the trajectories of a given moving object, no
matter how big the dataset is. The query time of Lorry is a
little more than that of T-Drive, because the sampling rate
of Lorry is higher, and it returns more GPS points in a given
time window.

Different Time Windows. Figs. 14c and 14d present the ID
temporal query time with different time windows. It is
observed that, 1) for all time periods, the query time
increases when a longer time window is given, as more tra-
jectory data is returned. As T-Drive data only contains one
week of data, if given one month of time window, the query
time does not increase. 2) The query time over Lorry is
more than that over T-Drive, because the sampling rate of
Lorry is higher than that of T-Drive. When given the same
time window, Lorry returns more GPS points. 3) The

selection of time period has little to do with ID temporal
query in our experimental settings. Because we set moving
object IDs as the prefix of keys, which prunes most unneces-
sary trajectory data. Another reason could be the powerful
parallel ability of underlying data store in TrajMesa.
Although a shorter time period may result in more query
windows, TrajMesa triggers SCAN operations over the
underlying data store in parallel. To this end, we suggest
choose a longer time period bin in XZT , as XZT with a
shorter time period bin cannot index longer trajectories.

6.4 Performance of Spatial Range Query

Different Data Sizes. Figs. 15a and 15b exhibit the spatial
range query time varying with different data sizes (TMnlb is
not presented, as it is the same with TM). From the figures,
we can observe that: 1) for both datasets, if we increase the
data size, it requires more time for all methods, as more
data incurs more disk I/Os; 2) TM is faster than TMnps for
the same data size, as TM scans less data thanks to the pro-
posed PosCode; 3) TMV is slower than TM, because the stor-
age space of TMV is much larger than that of TM, which
triggers more disk I/Os; 4) Dita builds huge indexes in
memory. When the Lorry data size is greater than 60%, Dita
fails for an out-of-memory exception; 5) TM is faster than
Dita by two orders of magnitude sometimes, because TM
locates related data directly, but Dita scans big indexes;
6) STH is slower than TM, because it triggers multiple disk

Fig. 13. Performance of storage.

Fig. 14. Performance of ID temporal query.

Fig. 15. Performance of spatial range query.

LI ETAL.: TRAJMESA: A DISTRIBUTED NOSQL-BASED TRAJECTORY DATA MANAGEMENT SYSTEM 1023

read/writes even for a single request. Although STH seems
faster than Dita for spatial range queries, it takes unbearable
time to build the indexes. For example, STH takes up to 61
minutes to build the spatial indexes even for T-Drive data
in our experiments. To this end, we do not compare STH for
the big Lorry data.

Different Spatial Windows. Figs. 15c and 15d show that
with a bigger spatial window, all methods need more time,
as more data is read. TM is superior to TMnps, because
PosCode avoids retrieving invalid trajectories. TM is much
faster than TMV , due to the smaller storage space offered by
H-Store. TM is faster than Dita and STH for all given spatial
ranges, because TM locates directly the candidate data
(with no index in memory), but Dita needs to scan huge
indexes in memory (its space complexity is OðN2

G þNKþ2
L þ

jT jÞ, which is proportional to the number of trajectories),
and STH incurs multiple disk I/Os even for a single request.

6.5 Performance of Similarity Query

Different Data Sizes. As depicted in Figs. 16a and 16b, for all
methods, the similarity query time increases with a bigger
data size, because with more data, it would return more tra-
jectories. TM is faster than TMnps, as similarity query calls
spatial range query, where position code improves effi-
ciency. TMnlb is slower than TM, as without lower bound
pruning, it needs to calculate the similarity of all candidate
trajectories, which is time-consuming. Dita is much slower
than TM, because Dita builds big indexes in memory. For
each query, Dita would scan the huge indexes, which is
costly. On the contrary, TM directly generates the query
windows, and triggers SCAN operations over the underlying
data store in parallel. The scalability of Dita is limited. When
the Lorry data size is more than 60%, Dita throws an out-of-
memory exception. However, TM works well even for full
Lorry data size, which proves the powerful scalability of
TM.

Different ". Figs. 16c and 16d show that with a bigger
threshold ", the similarity query time increases slightly for

all methods, because with a bigger ", more trajectories will
be returned. TM and its variants are faster than Dita, even
by three orders of magnitude, which further proves the
powerful efficiency of TrajMesa. Note here that we only use
60% of Lorry data in Fig. 16c, as Dita does not support larger
data in our experimental environment.

6.6 Performance of k-NN Query

Different Data Sizes. Figs. 17a and 17b show that, with an
increasing of data size, the query time of all methods
increases, because it extracts more data from the disk in
every expansion. TM takes less time than TMnps, which ben-
efits from the position code. TMnlb is slower than TM,
because it needs calculate the similarity of all candidates,
which is time-consuming. Both Dita and DFT take more
time than TM, as they need to scan huge indexes in memory
for each request. Dita and DFT could not cope with the situ-
ation when the data size of Lorry is more than 40% and 60%
respectively, as they need to build memory-consuming
indexes, but TM can easily handle it, which proves the pow-
erful scalability of TM.

Different k. Figs. 17c and 17d present the k-NN query time
with different k values. Note that we only use 40% of Lorry
data, as Dita cannot handle more data for the bottleneck of
memory. It shows that for both datasets, with a bigger k, all
methods need more time, as they would check more trajec-
tory data. Given a value of k, TM takes less time than TMnps

and TMnlb, verifying the effectiveness of position code and
pruning rules. TM outperforms Dita and DFT, even by two
orders of magnitude for a larger dataset of Lorry. It is
because TM directly generates a bunch of query windows,
and performs these query windows in parallel. But Dita and
DFT need to scan the huge indexes.

6.7 Scalability of TrajMesa

To further verify the scalability of TrajMesa, we conduct a
set of experiments using the synthetic dataset, whose size is
over 1T. As shown in Fig. 18a, when the data size gets

Fig. 16. Performance of similarity query.

Fig. 17. Performance of k-NN query.

1024 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

bigger from 20% to 100%, both storing time and storage size
grow linearly, because more trajectories need to be proc-
essed. Storing about 1T data only needs about 1.5 hours and
313 GB disk space, which is due to the novel underlying
storage schema and compression mechanism.

Fig. 18b shows that the time of all queries increases with
a bigger data size, as more trajectories are qualified, and it
triggers more disk I/Os and more transmission bandwidth.
It is interesting to see that the query time of similarity query
is less than that of spatial range query, although we perform
two spatial range queries underlying each similarity query.
The reason could be that similarity query prunes most tra-
jectories, and there is much less data returned. The trans-
mission bandwidth acts as a bottleneck.

7 RELATED WORKS

In this section, we summarize the related works from three
aspects: spatial and spatio-temporal indexes, NoSQL for
spatio-temporal data, and trajectory data management.

Spatial and Spatio-Temporal Indexes. Traditional relational
database management systems, e.g., Oracle Spatial or Post-
GIS, adopt R-tree [36], k-d tree [37], quad tree [38], or their
variants to index spatial data. To index spatio-temporal
data, [39] proposes a unified spatio-temporal indexing
schema, i.e, 3D R-tree, which regards the temporal informa-
tion as a third dimension. However, 3D R-tree is not suitable
for trajectories with a long period [23]. HR-tree [40] and H
+R-tree [41] break the temporal dimension into disjoint time
intervals, and build an individual spatial index for each
time period. CSE-tree [42], conversely, first partitions spatial
data into grids, and for each grid, it builds a B+tree. These
systems are mainly centralized implementations. They suf-
fer from scalability problem, and could not manage massive
trajectories effectively.

NoSQL for Spatio-Temporal Data. Key-value data stores,
like Bigtable [16] and its open-source counterparts, e.g., Cas-
sandra [43] and HBase, have proven to scale to millions of
updates, and provide high-scalability, high-availability and
fault-tolerant data management. These key-value data
stores, however, do not natively support multi-attribute
access, which results in full scan of the entire data for spa-
tio-temporal queries. There emerge many works [17], [44],
[45], [46], [47], [48] to support multi-dimensional data access
over key-value data stores. For example, MD-HBase [44]
encodes spatial data using Z-Ordering method, and builds
two index structures, i.e., k-d tree and quad tree, among
these codes over HBase. BBoxDB [45] proposes a two-level
index structure over NoSQL data stores, where the global
index uses a k-d tree to indicate which node stores the data,

and the local index employs an R-tree in each node to find
the partition of each data item. GeoMesa [17] provides a
toolkit to transform multi-dimensional data into key ranges,
thus enables NoSQL data stores to manage spatio-temporal
data. However, these frameworks are not designed for tra-
jectory data, thus cannot be applied to manage trajectories
directly.

Trajectory Data Management. To manage massive trajecto-
ries, many trajectory management systems have emerged,
which can be divided into three main categories: 1) Single
Machine-based Systems [5], [6]. For example, TrajStore [5]
maintains an adaptive grid-based index on the data, and
dynamically co-locates and compresses spatially and tem-
porally adjacent data on disk, thus it can retrieve all data in
a particular spatio-temporal region efficiently. Torch [6]
proposes a unified index, i.e., LEVI with compression, and
an efficient query processing technique to support various
trajectory queries. However, single machine-based trajec-
tory management systems suffer from scalability problem,
and cannot manage big trajectories effectively. 2) Distributed
In-Memory Systems [10], [11], [12], [13], [14]. For example,
Dita [12] identifies representative points as pivots in trajec-
tories, and designs a trie-like index structure based on the
pivots to prune dissimilar trajectories efficiently. UlTra-
Man [10] integrates chronicle map with Spark to relieve the
significant pressure on JVM GC, and implement an abstrac-
tion TrajDataset for random data access. DFT [11] partitions
trajectories based on their segments instead of MBRs, thus
can reduce the overlaps of regions and empower the ability
of pruning. Most of these in-memory frameworks are based
on Spark, and need to load all trajectories into memory to
build indexes, hence they require high-performance clusters
with much memory, and cannot scale to very large trajec-
tory data. Besides, for each request, they need to scan huge
indexes, which is costly. 3) Distributed Disk-based Systems [7],
[8], [9], [29], [30]. For example, [9] proposes PMI and OII to
deal with spatio-temporal range queries of trajectory data
based on MapReduce. [8] proposes Summit based on [7] to
process massive trajectories using Hadoop. [30] proposes a
cloud-based trajectory data management framework, but
they adopt V-Store as the underlying storage schema, and
do not optimize for similarity query and k-NN query.
THBase [35] proposes a coprocessor-based scheme for big
trajectory data management based on HBase. It exploits a
hybrid local secondary index structure to accelerate spatio-
temporal queries. However, THBase is not optimized in the
underlying trajectory storage, which hinders its efficiency.

8 CONCLUSION

This paper proposes TrajMesa, which manages big trajec-
tory data efficiently with plenty of queries support. We care-
fully design a novel storage schema that reduces the storage
size tremendously. We devise a novel method to index time
ranges, and a position code to indicate trajectory locations
accurately. A bunch of pruning rules are proposed to accel-
erate similarity query and k-NN query in NoSQL envi-
ronments. Experiments using three datasets verify the
powerful efficiency and scalability of TrajMesa, showing
that TrajMesa is 100�1000 times faster than the state-of-the-
art trajectory data frameworks in our experimental settings.

Fig. 18. Scalability of TrajMesa.

LI ETAL.: TRAJMESA: A DISTRIBUTED NOSQL-BASED TRAJECTORY DATA MANAGEMENT SYSTEM 1025

ACKNOWLEDGMENTS

Wewould like to thank our developers for their contributions,
with special thanks to Yuan Sui, Wei Wu, Junwen Liu, Hao-
wen Zhu, Jian Hu, and Peng Wang. Suggestions and com-
ments from anonymous reviewers greatly improve this paper.

REFERENCES

[1] R. Li et al., “Discovering real-time reachable area using trajectory
connections,” in Proc. 25th Int. Conf. Database Syst. Adv. Appl.,
2020, pp. 36–53.

[2] L.-A. Tang et al., “On discovery of traveling companions from
streaming trajectories,” in Proc. IEEE 28th Int. Conf. Data Eng.,
2012, pp. 186–197.

[3] S. Ma, Y. Zheng, and O. Wolfson, “Real-time city-scale taxi
ridesharing,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 7,
pp. 1782–1795, Jul. 2015.

[4] T. He et al., “Interactive bike lane planning using sharing bikes’
trajectories,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 8, pp. 1529–
1542, Aug. 2020.

[5] P. Cudre-Mauroux, E. Wu, and S. Madden, “TrajStore: An adap-
tive storage system for very large trajectory data sets,” in Proc.
IEEE 26th Int. Conf. Data Eng., 2010, pp. 109–120.

[6] S. Wang, Z. Bao, J. S. Culpepper, Z. Xie, Q. Liu, and X. Qin,
“Torch: A search engine for trajectory data,” in Proc. 41st Int.
ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2018, pp. 535–544.

[7] L. Alarabi, “ST-Hadoop: A MapReduce framework for big spatio-
temporal data,” in Proc. ACM Int. Conf. Manage. Data, 2017,
pp. 40–42.

[8] L. Alarabi, “Summit: A scalable system for massive trajectory data
management,” SIGSPATIAL Special, vol. 10, no. 3, pp. 2–3, 2019.

[9] Q. Ma, B. Yang, W. Qian, and A. Zhou, “Query processing of mas-
sive trajectory data based on MapReduce,” in Proc. 1st Int. Work-
shop Cloud Data Manage., 2009, pp. 9–16.

[10] X. Ding, L. Chen, Y. Gao, C. S. Jensen, and H. Bao, “UlTraMan: A
unified platform for big trajectory data management and analy-
tics,” Proc. VLDB Endowment, vol. 11, no. 7, pp. 787–799, 2018.

[11] D. Xie, F. Li, and J. M. Phillips, “Distributed trajectory similarity
search,” Proc. VLDBEndowment, vol. 10, no. 11, pp. 1478–1489, 2017.

[12] Z. Shang, G. Li, and Z. Bao, “DITA: Distributed in-memory trajec-
tory analytics,” in Proc. ACM Int. Conf. Manage. Data, 2018,
pp. 725–740.

[13] H. Yuan and G. Li, “Distributed in-memory trajectory similarity
search and join on road network,” in Proc. IEEE 35th Int. Conf.
Data Eng., 2019, pp. 1262–1273.

[14] Z. Zhang, C. Jin, J. Mao, X. Yang, and A. Zhou, “Trajspark: A scal-
able and efficient in-memory management system for big trajec-
tory data,” in Proc. Joint Conf. Web Big Data Asia-Pacific Web Web-
Age Inf. Manage., 2017, pp. 11–26.

[15] Z. Fang, L. Chen, Y. Gao, L. Pan, and C. S. Jensen, “Dragoon: A
hybrid and efficient big trajectory management system for offline
and online analytics,” VLDB J., vol. 30, pp. 1–24, 2021.

[16] F. Chang et al., “Bigtable: A distributed storage system for structured
data,”ACMTrans. Comput. Syst., ACMNewYork, NY, USA, vol. 26,
no. 2, pp. 1–26, 2008.

[17] Geomesa, 2021. [Online]. Available: https://www.geomesa.org/
[18] R. Li et al., “TrajMesa: A distributed NoSQL storage engine for big

trajectory data,” in Proc. IEEE 36th Int. Conf. Data Eng., 2020,
pp. 2002–2005.

[19] TrajMesa, 2021. [Online]. Available: http://trajmesa.urban-
computing.com/

[20] H. Alt and M. Godau, “Computing the fr�echet distance between
two polygonal curves,” Int. J. Comput. Geometry Appl., vol. 5,
no. 01n02, pp. 75–91, 1995.

[21] S. Nutanong, E. H. Jacox, and H. Sagan, “An incremental haus-
dorff distance calculation algorithm,” Proc. VLDB Endowment,
vol. 4, no. 8, pp. 506–517, 2011.

[22] B.-K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of
similar time sequences under time warping,” in Proc. 14th Int.
Conf. Data Eng., 1998, pp. 201–208.

[23] Y. Zheng, “Trajectory data mining: An overview,” ACM Trans.
Intell. Syst. Technol., vol. 6, no. 3, 2015, Art. no. 29.

[24] H. Sagan, Space-Filling Curves. Berlin, Germany: Springer Science
& Business Media, 2012.

[25] J. A. Orenstein and T. H. Merrett, “A class of data structures for
associative searching,” in Proc. ACM Int. Conf. Manage. Data, 1984,
pp. 181–190.

[26] C. B€ohm, G. Klump, and H.-P. Kriegel, “XZ-ordering: A space-fill-
ing curve for objects with spatial extension,” in Proc. 6th Int. Symp.
Adv. Spatial Databases, 1999, pp. 75–90.

[27] J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert,
and M. Ronquest, “GeoMesa: A distributed architecture for spa-
tio-temporal fusion,” in Proc. Geospatial Informat. Fusion Motion
Video Analytics V, 2015, vol. 9473, Art. no. 94730F.

[28] S. Ruan et al., “Learning to generate maps from trajectories,”
in Proc. 34th AAAI Conf. Artif. Intell., 2020, pp. 890–897.

[29] S. Ruan, R. Li, J. Bao, T. He, and Y. Zheng, “CloudTP: A cloud-
based flexible trajectory preprocessing framework,” in Proc. IEEE
34th Int. Conf. Data Eng., 2018, pp. 1601–1604.

[30] J. Bao, R. Li, X. Yi, and Y. Zheng, “Managing massive trajectories
on the cloud,” in Proc. 24th ACM SIGSPATIAL Int. Conf. Adv. Geo-
graphic Inf. Syst., 2016, Art. no. 41.

[31] R. Li, S. Ruan, J. Bao, and Y. Zheng, “A cloud-based trajectory data
management system,” in Proc. 25th ACM SIGSPATIAL Int. Conf.
Adv. Geographic Inf. Syst., 2017, Art. no. 96.

[32] B. Aydin, V. Akkineni, and R. A. Angryk, “Modeling and index-
ing spatiotemporal trajectory data in non-relational databases,” in
Managing Big Data in Cloud Computing Environments. Hershey, PA,
USA: IGI Global, 2016, pp. 133–162.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[34] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge
from the physical world,” in Proc. 17th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2011, pp. 316–324.

[35] J. Qin, L. Ma, and J. Niu, “THBase: A coprocessor-based scheme
for big trajectory data management,” Future Internet, vol. 11, no. 1,
2019, Art. no. 10.

[36] A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Search-
ing, vol. 14. New York, NY, USA: ACM, 1984.

[37] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Communications, vol. 18, no. 9, pp. 509–517,
1975.

[38] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for
retrieval on composite keys,” Acta Informatica, vol. 4, no. 1,
pp. 1–9, 1974.

[39] Y. Theodoridis, M. Vazirgiannis, and T. Sellis, “Spatio-temporal
indexing for large multimedia applications,” in Proc. 3rd IEEE Int.
Conf. Multimedia Comput. Syst., 1996, pp. 441–448.

[40] Y. Tao and D. Papadias, “Efficient historical R-trees,” in Proc. 13th
Int. Conf. Sci. Statist. Database Manage., 2001, pp. 223–232.

[41] Y. Tao and Papadias, “MV3R-Tree: A spatio-temporal access
method for timestamp and interval queries,” in Proc. 27th Int.
Conf. Very Large Data Bases, 2001, vol. 1, pp. 431–440.

[42] L. Wang, Y. Zheng, X. Xie, and W.-Y. Ma, “A flexible spatio-tem-
poral indexing scheme for large-scale GPS track retrieval,”
in Proc. 9th Int. Conf. Mobile Data Manage., 2008, pp. 1–8.

[43] A. Lakshman and P. Malik, “Cassandra: A decentralized struc-
tured storage system,” ACM SIGOPS Oper. Syst. Rev., vol. 44,
no. 2, pp. 35–40, 2010.

[44] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi , “MD-HBase:
A scalable multi-dimensional data infrastructure for location
aware services,” in Proc. IEEE 12th Int. Conf. Mobile Data Manage.,
2011, vol. 1, pp. 7–16.

[45] J. K. Nidzwetzki and R. H. G€uting, “BBoxDB–A scalable data store
for multi-dimensional big data,” in Proc. 27th ACM Int. Conf. Inf.
Knowl. Manage., 2018, pp. 1867–1870.

[46] N. Du, J. Zhan, M. Zhao, D. Xiao, and Y. Xie, “Spatio-temporal
data index model of moving objects on fixed networks using
HBase,” in Proc. IEEE Int. Conf. Comput. Intell. Commun. Technol.,
2015, pp. 247–251.

[47] Y.-T. Hsu, Y.-C. Pan, L.-Y. Wei, W.-C. Peng, and W.-C. Lee, “Key
formulation schemes for spatial index in cloud data man-
agements,” in Proc. IEEE 13th Int. Conf. Mobile Data Manage., 2012,
pp. 21–26.

[48] X. Tang, B. Han, and H. Chen, “A hybrid index for multi-dimen-
sional query in HBase,” in Proc. 4th Int. Conf. Cloud Comput. Intell.
Syst., 2016, pp. 332–336.

1026 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

https://www.geomesa.org/
http://trajmesa.urban-computing.com/
http://trajmesa.urban-computing.com/

Ruiyuan Li (Member, IEEE) received the BE and
MS degrees from Wuhan University, China, in
2013 and 2016, respectively, and the PhD degree
from Xidian University, China, in 2020. He was
the head of Spatio-Temporal Data Group, JD iCity
and a researcher with JD Intelligent Cities
Research, leading the research and development
of JUST (JD Urban Spatio-Temporal data
engine). Before joining JD, he has interned with
Urban Computing Group, Microsoft Research
Asia from 2014 to 2017. His research interests
include spatio-temporal data management and
urban computing.

Huajun He received the BE degree in 2018 from
Southwest Jiaotong University, where he is cur-
rently working toward the PhD degree with the
School of Computer Science and Technology. He
is currently a research intern with JD Intelligent
Cities Research and JD iCity, under the supervi-
sion of Prof. Yu Zheng and Dr. Jie Bao. His
research interests include urban computing,
database, spatio-temporal data mining, and dis-
tributed systems.

Runbin Wang received the BE degree in 2018
from Southwest Jiaotong University, where he is
currently working toward the master’s degree
with the School of Computer Science and Tech-
nology. He is currently a research intern with JD
Intelligent Cities Research and JD iCity, under
the supervision of Prof. Yu Zheng and Dr. Jie Bao.
His research interests include urban computing,
spatio-temporal data mining, and distributed
systems.

Sijie Ruan received the BE degree in 2017 from
Xidian University, where he is currently working
toward the PhD degree with the School of Com-
puter Science and Technology. From 2016 to
2017, he was an intern with MSR Asia. He is cur-
rently a research intern with JD Intelligent Cities
Research and JD iCity, under the supervision of
Prof. Yu Zheng and Dr. Jie Bao. His research
interests include urban computing, spatio-tempo-
ral data mining, and distributed systems.

Tianfu He recieved the BE degree in 2016 from
theHarbin Institute of Technology, where he is cur-
rently working toward the PhD degree with the
School of Computer Science. His current research
interests include urban computing, spatio-tempo-
ral data management and data mining, especially
trajectory datamining.

Jie Bao received the PhD degree in computer
science from the University of Minnesota, Twin
Cities, in 2014. From 2014 to 2017, he was a
researcher with Urban Computing Group, MSR
Asia. He currently leads Data Platform Division,
JD iCity. His research interests include spatio-
temporal data management or mining, urban
computing, and location-based services.

Junbo Zhang (Member, IEEE) is currently a senior
researcher of JD Intelligent Cities Research. He is
leading the Urban AI Product Department of JD
iCity, JD Technology, and also AI Lab of JD Intelli-
gent Cities Research. He has authored or coau-
thored more than 50 research papers, such as, AI
Journal, IEEE TKDE, KDD, AAAI, IJCAI, WWW,
ACL, and UbiComp, in refereed journals and con-
ferences. His research interests include spatio-
temporal data mining and AI, urban computing,
deep learning, and federated learning. He is an

associate editor for the ACM Transactions on Intelligent Systems and
Technology. He was the recipient of ACM Chengdu Doctoral Dissertation
Award in 2016, Chinese Association for Artificial Intelligence (CAAI) Excel-
lent Doctoral Dissertation Nomination Award in 2016, Si Shi Yang Hua
Medal of SWJTU in 2012, andOutstandingPhDGraduate of SichuanProv-
ince in 2013. He is a senior member of China Computer Federation, a
member of ACM.

Liang Hong (Member, IEEE) received the BS
and PhD degrees in computer science from the
Huazhong University of Science and Technology
in 2003 and 2009, respectively. He is currently a
professor with the School of Information Manage-
ment, Wuhan University. His research interests
include knowledge graph, spatio-temporal data
management, and social networks.

Yu Zheng (Fellow, IEEE) is currently a vice presi-
dent and chief data scientist with JD.COM, pas-
sionate about using big data and AI technology to
tackle urban challenges. He also leads the JD
iCity, as the president and is the director of JD
Intelligent Cities Research. Before joining JD, he
was a senior research manager with Microsoft
Research. He is also a chair professor with
Shanghai Jiao Tong University and an adjunct
professor with the Hong Kong University of Sci-
ence and Technology. His research interests

include big data analytics, spatio-temporal data mining, machine learn-
ing, and artificial intelligence.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ETAL.: TRAJMESA: A DISTRIBUTED NOSQL-BASED TRAJECTORY DATA MANAGEMENT SYSTEM 1027

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

