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Abstract—Fine-grained urban flow inference, which aims to infer the fine-grained urban flows of a city given the coarse-grained urban
flow observations, is critically important to various smart city related applications such as urban planning and public safety. Previous
works assume that the urban flow monitoring sensors are evenly distributed in space for data collection and thus the observed urban
flows are complete. However, in real-world scenarios, sensors are usually unevenly deployed in space. For example, the traffic
cameras are mostly deployed at the crossroads and central areas of a city, but less likely to be deployed in suburb. The data scarcity
issue poses great challenges to existing methods for accurately inferring the fine-grained urban flows, because they require all urban
flow observations to be available. In this paper, we make the first attempt to infer fine-grained urban flows based on the incomplete
coarse-grained urban flow observations, and propose a Multi-Task urban flow Completion and Super-Resolution network (MT-CSR for
short) to simultaneously complete the coarse-grained urban flows and infer the fine-grained flows. Specifically, MT-CSR consists of the
data completion network (CMPNet for short) and data super-resolution network (SRNet for short). CmpNet is composed of a local
spatial information based data completion module LocCmp and an auxiliary information based data completion module AuxCmp to
consider both the local geographical and global semantic correlations for urban flow data completion. SRNet is designed to capture the
complex associations between fine- and coarse-grained urban flows and upsample the coarse-grained data by stacking the designed
super-resolution blocks. To gain an accurate inference, two parts are jointly conducted under a multi-task learning framework, and
trained in an end-to-end manner using a two-stage training strategy. Extensive experiments on four large real-world datasets validate
the effectiveness and efficiency of our method compared with the state-of-the-art baselines.

Index Terms—Multi-task learning, Urban flow inference, Spatio-temporal data.

F

1 INTRODUCTION

F Ine-grained urban flows (e.g., taxi flows, bike flows
and human trajectories), which depict detailed human

mobility patterns in urban areas, are critically important to
many smart city related applications such as urban plan-
ning, city renewal and traffic management [1]. To obtain
the fine-grained urban flow observations, a large number
of sensors are required to be deployed in different areas of
a city, which will lead to huge expenditure in terms of daily
operation and maintenance [2]. For example, to sense city-
wide traffic conditions, a large number of cameras need to
be deployed at the intersections of the transportation net-
work. However, in reality, the number of deployed sensors
for collecting urban flows is usually very limited due to
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the high cost. Therefore, how to effectively infer the fine-
grained urban flows based on the sparse and coarse-grained
observations by sensors has become an important research
issue, attracting rising research attention recently [3, 4].

Traditionally, statistic methods are widely used for fine-
grained urban flow inference, such as bilinear, bicubic and
nearest interpolation [5]. Xu and Zhu [6] designed a tensor
decomposition method for urban flow inference. Chen et al.
[7] proposed a tensor co-factorization model to detect fine-
grained urban events. However, the performance of these
methods is less promising as they only consider the urban
flow data, but ignore external features such as weather and
holiday. Recently, motivated by the great success of super-
resolution algorithms in computer vision [8], researchers
tried to regard fine-grained urban flow inference as a spatio-
temporal data super-resolution problem [9], since the urban
flows of the cell regions of a city can be considered as spatial
map images. SRCNN [10] for the first time combined bicubic
interpolation method with convolutional neural network for
image super-resolution. To address the issue of small recep-
tive fields and slow convergence in SRCNN, Kim et al. [11]
proposed VDSR by adopting a deep convolutional network
and a residual learning strategy. UrbanFM [12] for the first
time employed data super-resolution method for urban flow
inference. Different from image super-resolution, UrbanFM
contained an external factor fusion network to extract exter-
nal features (e.g., weather, temperature and holiday) and an
inference network. To further improve the performance of
UrbanFM at high upscaling rates, UrbanPy [13] employed
a pyramid architecture consisting of multiple components,
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Fig. 1: Fine-grained urban flow inference with incomplete
data. The white cell regions denote that the urban flows are

unavailable.

where each component functioned as an atomic upsampler
for a small scale (e.g. 2×), decomposing the original task
into multiple subtasks. Liang et al. [14] designed a general
framework named DeepLGR for citywide crowd flow anal-
ysis. DeepLGR contained a local feature extraction module,
a global context module and a region-specific predictor.
However, the major limitation of the above methods is that
they all assume that sensors are evenly distributed and the
collected coarse-grained urban flows are complete, which
may not hold in real application scenarios.

As shown in Fig. 1, this paper makes the first attempt
to infer the fine-grained urban flows given that the coarse-
grained data are unevenly distributed and incomplete.
Compared with the previous urban flow inference problem
that ignoring data incompleteness problem, the studied
problem is more difficult due to the following challenges.
• The sparse and incomplete urban flow observations.

Due to the unevenly distributed sensors and data pri-
vacy issue, the urban flow observations are sparse and
incomplete. It is difficult to accurately infer fine-grained
urban flows on the locations without urban flow obser-
vations. In addition, urban flow data completion itself is
challenging considering the complex spatial correlations
of the urban flows in different areas of a city. For example,
two areas with similar urban functions (e.g., commercial
areas) can be correlated in terms of their urban flow
distribution, though they are not spatially adjacent or
even far away from each other [15].

• The complex associations between fine- and coarse-
grained urban flow data. In urban flow maps, one coarse-
grained region is associated with multiple (4 in this
case) fine-grained neighbor regions, and such association
should be considered in fine-grained urban flow infer-
ence. Previous work [12] used a structural constraint to
guarantee that the flow of a coarse-grained region is equal
to the sum of the constituent regions in the fine-grained
situation. Nevertheless, this structural constraint may not
hold for the studied problem when the urban flow data
of some regions are missing. Besides, urban flows can be
significantly affected by external factors such as weather
and holiday. It is challenging to incorporate both the
complex structural constraint and the external features to
help the studied problem.

• Jointly conducting urban flow data completion and
super-resolution. Significantly different from previous
works, our work actually contains two tasks: urban flow
data completion and super-resolution. Conducting the
two tasks separately may not achieve desirable perfor-
mance as the two tasks are highly correlated. Completing

the coarse-grained urban flows can help infer a more
accurate fine-grained urban flows, while the inferred fine-
grained urban flows can in turn guide us to refine the
completion of the initial urban flow observations. Hence,
how to jointly conduct both tasks simultaneously rather
than separately is also challenging.

To tackle the aforementioned challenges, we present a
Multi-Task urban flow Completion and Super-Resolution
network model named MT-CSR for the fine-grained ur-
ban flow inference with incomplete data. Specifically, we
first propose a data completion network (CMPNet) to fill
the incomplete coarse-grained urban flow spatial maps by
capturing the data correlations among regions. CMPNet
includes a local spatial information based data completion
module (LocCmp) and an auxiliary information based data
completion module (AuxCmp). LocCmp aims to acquire
features in the surrounding regions in order to capture the
local spatial dependencies. Previous studies [16] show that
urban flows are highly correlated with POIs. Thus, we also
design AuxCmp to complete the initial urban flow data by
capturing the global semantic correlations reflected by POIs.
Next, we design a data super-resolution network named
SRNet, which contains a feature extraction FE module and
stacked super-resolution SR blocks, to capture the complex
associations between coarse- and fine-grained urban flows.
Concretely, the FE module aims to capture urban flows
semantic constraints by extracting external features. Differ-
ent from previous super-resolution block [12], the interior
structure of our SR block is stepped which obtains structural
constraints by considering both local and global spatial
correlations. Finally, CMPNet and SRNet are jointly con-
ducted under a multi-task learning framework to perform
data completion and data super-resolution simultaneously.
A two-stage training strategy is also proposed to make
the training of MT-CSR more efficient and effective. We
summarize our contributions as follow.

• We for the first time study the problem of fine-grained
urban flow inference with incomplete data, and pro-
pose a Multi-Task urban flow Completion and Super-
Resolution network model named MT-CSR to effec-
tively address it.

• We design a data completion network CMPNet to com-
plete the coarse-grained urban flows by considering
both the local spatial dependencies and the global POI
similarities. We also propose a data super-resolution
network SRNet to capture the complex associations
between fine- and coarse-grained data.

• Extensive experiments are conducted on four large real-
world datasets. Experimental results demonstrate the
superiority of our method by comparison with existing
state-of-the-art approaches.

The remainder of the paper is organized as follows. We
will first briefly review related work in Section 2. Then, no-
tations and problem definition will be introduced in Section
3. Next, we will introduce the proposed model in detail
in Section 4, followed by experimental results in Section 5.
Finally, we will conclude the paper in Section 6.



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3154163, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

2 RELATED WORK
2.1 Urban Flow Data Prediction
Recently, urban flow data prediction [9, 17, 18] has attracted
rising research interest in the field of urban computing.
Traditionally, statistics-based time series models such as
ARIMA and Regression are used to address this problem.
For example, [19] used ARIMA model to predict short-term
urban flows. However, conventional methods usually are
not effective to capture complex spatial and temporal corre-
lations of urban flow data. Recently, various deep learning
methods are proposed, and achieve significant prediction
performance gains. ConvLSTM [20] employed both spatial
and temporal information for spatio-temporal data predic-
tion. It used LSTM [21] as a main model to capture temporal
features and then employed CNN on input data and hidden
state data for spatial features learning. In order to capture
periodic properties, Zhang et al. [22] designed an end-
to-end structure named ST-ResNet. ST-ResNet contained a
residual neural network and residual convolutional units
for spatio-temporal features learning. For learning historical
information and making the prediction step by step, Pan
et al. [23] designed an encoder-decoder architecture ST-
MetaNet+ which combined meta-learning with deep learn-
ing. Li et al. [24] proposed an AutoST model for urban
flow prediction which consisted of optional convolution
operations and learnable skip connections. MT-ASTN [25]
adopted a shared-private framework which contained pri-
vate spatial-temporal encoders, a shared spatial-temporal
encoder, and decoders to learn the task-specific features and
shared features. Different from urban flow data prediction,
the problem studied in this paper aims to infer the fine-
grained urban flows based on the coarse-grained observa-
tions rather than predicting the future urban flows based on
historical observations.

2.2 Spatio-Temporal Data Completion
Spatio-temporal data completion aims to fill the sparse and
incomplete spatio-temporal data with reliable values. In the
early years, statistic algorithms are used for urban flow data
completion [26]. Criminisi et al. [27] proposed a exemplar-
based inpainting algorithm to find the nearest patch in
the source region and copy the patch of source region to
target patch. PatchMatch [28] was an approximate nearest
neighbor method which used the consistence of urban flows
to reduce the scope of search and self-similar redundancy.
He and Sun [29] calculated k main offsets, fused offsets
with urban flows and then stacked processed urban flows.
However, such methods ignored the spatial-temporal cor-
relations of urban flows. Recently, a large number of deep
learning based image completion algorithms are applied to
solve urban flow data completion, because urban flows in
grid regions of a city can be treated as images [30]. Pathak
et al. [31] proposed a context encoder to combine a encoder-
decoder structure with reconstruction loss and adversarial
loss for generating the contents of arbitrary images condi-
tioned on surroundings. Partial Convolutions (PConv) [32]
resolved some deficiencies of existing models like data mis-
matching and data blurring by using partial convolutions,
where the convolution was masked and renormalized to be
conditioned on valid data. To address the over smoothness

issue, Nazeri et al. [33] proposed EdgeConnect model to
gain more ideal images by focusing attention on edges of
images and giving hallucinated edges. Nevertheless, the
major limitation of the above models is that directly apply-
ing them to the studied problem may not achieve desirable
performance as urban flows are highly correlated to external
features such as weather and holiday.

2.3 Spatio-Temporal Data Super-Resolution

Traditionally, statistic methods are also widely used for
spatial-temporal data super-resolution, such as bilinear,
bicubic and nearest interpolation [5]. Xu and Zhu [6] de-
signed a tensor decomposition method to achieve spatio-
temporal data super-resolution. Chen et al. [7] employed a
tensor co-factorization model to make spatio-temporal ur-
ban event super-resolution. Recently, approaches [34, 35] for
image super-resolution are also applied to spatio-temporal
data super-resolution tasks [8], since some spatio-temporal
data can be regarded as images. SRCNN [10] was the
first end-to-end super-resolution algorithm which combined
CNN layers with bicubic interpolation method. To solve the
issues of relying on the content of small image areas and
the slowness of convergence of SRCNN, Kim et al. [11]
proposed VDSR model by adopting a deep convolutional
network and a residual learning strategy. Ledig et al. [35]
proposed SRGAN, which was the first super-resolution
model for 4× upsampling. SRGAN used a perceptive loss
to push the inferred super-resolution images to the natural
image manifold.

However, image super-resolution is essentially differ-
ent to spatio-temporal data super-resolution, due to the
complex spatio-temporal data correlations and the effect of
external features. UrbanFM [12] designed an external factor
fusion network to extract external features (e.g. weather and
holiday) and it was combined with an inference network. To
further improve the performance of UrbanFM at high up-
scaling rates, Ouyang et al. [13] presented UrbanPy model
which employed a pyramid architecture containing multiple
components, where each functioned as an atomic upsampler
for a small scale like 2×. Liang et al. [14] designed a general
method named DeepLGR for citywide crowd analytics.
DeepLGR designed a local feature extraction module for
nearby information, a global context module for broadening
range of vision and a region-specific predictor for reduc-
ing the number of network parameters. However, existing
works on fine-grained urban flow inference all assume that
the coarse-grained urban flows are incomplete and thus may
not work well when the data is sparse and incomplete.

3 NOTIONS AND PROBLEM DEFINITION
We will first give some notations to help us state the studied
problem. Then a formal problem definition will be given.

Definition 1. Region. Based on latitude and longitude, we
partition a city into a I × J grid map, and denote all
regions as R = {r1,1, ...rm,n, ...rI,J} where rm,n is the
m-th row and n-th column cell region of the grid map.

Definition 2. Flow map. Let T be a collection of urban flow
trajectories. Given a cell region rm,n, the corresponding
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Fig. 2: The association between coarse- and fined-grained
urban flows.

inflow and outflow map of urban flows in the time slot t
are defined as:

Xt
in,m,n =

∑
ft∈T
{f t−1 /∈ rm,n ∩ f t ∈ rm,n}

Xt
out,m,n =

∑
ft∈T
{f t ∈ rm,n ∩ f t+1 /∈ rm,n}

where f ∈ T are urban flows. f t−1 /∈ rm,n denotes
f in time t − 1 that is not within region rm,n and
f t ∈ rm,n denotes f in time t is within region rm,n. ∩
denotes intersection operator. We denote the inflows and
outflows of all the regions in t as a urban flow tensor X t

∈ R2×I×J .

Definition 3. Coarse- and fine-grained urban flow spatial
map. A coarse-grained urban flow spatial map repre-
sents data granularity we observe based on the original
sensors. It is obtained by integrating nearby grids within
an N ×N range in a fine-grained urban flow map given
an upscaling factorN . Fig. 2 illustrates an example when
N = 2. Each coarse-grained urban flow in Fig. 2 (a) con-
sists of 2× 2 smaller urban flows in Fig. 2 (b). We denote
coarse- and fine-grained urban flow maps in time t as
X t

cg ∈ R2×I×J and X t
fg ∈ R2×NI×NJ , respectively. Note

that coarse-grained spatial maps are incomplete with
some entry values missing. We denote the incomplete
coarse-grained spatial map as X t

cg,un ∈ R2×I×J .

Definition 4. POI feature tensor. We collect Point of Inter-
est category distribution (e.g., education, residence, and
shopping) in each cell region, and denote POI features
in all the cell region as a tensor P ∈ RK×I×J , where K
denotes the POI categories.

Based on the above definitions and notations, we formally
define the studied problem as follows.
Problem 1. Given an upscaling factor N ∈ Z , a set of

historical incomplete coarse-grained urban flow spatial
maps {X t−k

cg,un,X t−k+1
cg,un , ...,X t

cg,un} ∈ R2×I×J , POI fea-
ture tensor P and external features matrix E including
weather and holiday, our goal is to infer a complete fine-
grained urban flow spatial map X t

fg ∈ R2×NI×NJ .

The notations and their descriptions used in this paper are
listed in Table 1.

4 METHODOLOGY
Fig. 3 shows the framework of MT-CSR, which contains
a data completion network CMPNet and a data super-
resolution network SRNet. In CMPNet, a local spatial infor-
mation based data completion module LocCmp and an aux-
iliary information based data completion module AuxCmp
are conducted to capture local spatial and global semantic
dependencies, respectively. External features E including

TABLE 1: Notations and Descriptions

Symbol Description
R Regions set
T Collection of urban flow trajectories
N ∈ Z Upscaling factor
P ∈ RK×I×J POI features tensor
E External features matrix

X t
cg,un ∈ R2×I×J Incomplete coarse-grained urban flow

spatial maps in time slot t

X t
cg ∈ R2×I×J Coarse-grained urban flow spatial maps

in time slot t

X t
fg ∈ R2×NI×NJ Fine-grained urban flow spatial maps

in time slot t

Mt
cg,un ∈ R2×I×J Masks of incomplete coarse-grained urban

flow spatial maps in time slot t
Ht

loc ∈ R2×I×J Output of LocCmp module in time slot t
sra,rb ∈ R POI similarity between two regions
Ht

auc ∈ R2×I×J Output of AuxCmp module in time slot t

weather and holiday are incorporated into LocCmp module
as side information. To capture the global semantic depen-
dencies, we design an AuxCmp module to help fill the
incomplete coarse-grained urban flows with the data in the
regions with similar POI distributions. We will elaborate this
part in Section 4.1.

Next, the outputs of LocCmp and AuxCmp are fused
and input into SRNet. SRNet includes a feature extrac-
tion FE module and stacked super-resolution SR blocks, to
capture the associations between coarse- and fine-grained
urban flows. External features are fed into the Extractor
block, aiming to capture the semantic constraints of urban
flows. Then ×2m with grey dotted square is designed to
upscale external features to match data dimension of SR
block and we will give details in the following section.
The fusion of input and extracted external features is input
to stacked SR blocks. In each SR block, Extraction net
and UpScale module are designed to extract features and
upscale complete coarse-grained urban flows, respectively.
Different from previous super-resolution module, we design
a stepped structure inside each SR block to capture local
and global spatial structure constraints between coarse- and
fine-grained urban flows. Finally, we design a distributional
upsampling module to guarantee the urban flows in a
coarse-grained region being equal to the sum of flows of
the constituent regions in the fine-grained situation. This
step will be introduced in detail in Section 4.2. CMPNet
and SRNet are jointly conducted under a carefully designed
multi-task learning framework. The final objective function
for multi-task learning model will be described in Section
4.3.

4.1 Data Completion Network

In order to capture both local spatial and global semantic
correlations for urban flow data completion, we design two
modules, local spatial information based data completion
and auxiliary information based data completion.

Local spatial information based data completion As
shown in Fig. 4, the module tries to fill the incomplete
coarse-grained urban flows by considering the local spatial
correlations among regions. To conduct data completion
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Fig. 3: The MT-CSR model for 2m upsacling.
⊕

denotes addition. Note that our model allows arbitrary upsacling factor.

Fig. 4: Illustration of data completion based on local spatial
correlations. The regions in white color denote that the data

are missing.

over the regions where the data are unavailable, we first
define the mask operation as follows:

Mt
cg,un(ri,j) =

{
1, ri,j = 0

0, otherwise
(1)

where M t
cg,un() is a mask function, which marks the regions

without crowd flow observations as 1 and the regions with
data as 0. Then a local fusion net (LFN) is proposed, whose
input is a set of historical incomplete urban flow spatial
maps. In LFN, the convolutional kernel extracts features of
the receptive field and fills the value of the central region
with the convolution result. We take region A whose flow
value is unavailable as shown in Fig. 4 as an example
to show how to fill its value. A 3 × 3 kernel is used to
conduct convolution operation over the area in the red
square shown in the figure whose central region is A, and
the convolution result is considered as the estimated value
of region A. If there are other cell regions whose values are
unavailable (e.g. regions B, C and D in Fig. 4), we set their
values as 0 with the mask operation during the convolution
operation. Formally, the local spatial information based data
completion can be conducted as follows.

X t
cg,un,i,j =

1

k2

i+bk/2c∑
i=i−bk/2c

j+bk/2c∑
j=j−bk/2c

X t
cg,un,i,j ∗ K (2)

whereX t
cg,un,i,j denotes a region ri,j whose value is missing

and needs to be estimated at time t. K denotes convolu-
tional kernel and k is the kernel size. By setting multiple

Fig. 5: Distribution of urban flow similarity on BJTaxi and
NYCTaxi datasets when POI similarity is larger than 0.9.

layers of LFN vertically, we fill incomplete coarse-grained
urban flows based on local spatial correlations. Through
stacking LFN horizontally, the temporal dependencies are
captured effectively. At the same time, the convolutional
kernel with stride setting to 1, moves from left to right
and top to bottom. During the kernel moving, the regions
with missing values from edge to center are filled one by
one. Therefore, the denominator can be set as fixed even if
there are missing values in the neighbors of a region. The
parameters are shared in the same layer. Inspired by [36, 37]
which initializes convolution kernel with external factors,
our convolution kernel in LFN is also initialized with exter-
nal features. As shown in the top left of module in Fig. 3,
the external features are fed into multiple fully-connected
layers and the output is considered as the convolution filter
weights. The formulas are as follows:

Ht,L = σ(Ht−1,L �Wh,L +Ht,L−1 �Wx,L + b) (3)

Wh,L = r(fh(E)) (4)

Wx,L = r(fx(E)) (5)

where L denotes layer, t denotes time, Wx,L and Wh,L are
parameter matrices and � denotes convolution operator.
When L is equal to 1,Ht,L−1 is X t

cg,un. If t = 1, we initialize
Ht−1,L with random values. r(·) is a reshape function,
f(·) is a fully-connected function, Wx,L and Wh,L are both
initialized with external features. The final result of the
module is Ht

loc.

Ht
loc = X t

cg,un +Ht,L · Mt
cg,un (6)
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Auxiliary information based data completion We also
design an auxiliary information based data completion
module to capture the global semantic correlations. Here,
we choose to use POIs as the auxiliary features due to the
high correlation between POIs and urban flows [16].

We first investigate whether POIs are highly correlated
to urban flows and can reflect the trend of urban flows. We
conduct similarity analysis between POIs and urban flows
over the taxi trip datasets in Beijing and New York city. For
convenience, we flatten regions R = {r1,1, ...rm,n, ...rI,J} as
R = {r1, ...ra, ...rK}, where K is equal to I × J .

sra,rb = S(ra, rb), ra, rb ∈ R (7)

In Equation (7), sra,rb is the POI similarity between regions
ra and rb. The similarity evaluation metric can be Cosine
similarity or Pearson similarity, etc. In this paper we use
Cosine similarity as follows.

S(ra, rb) =
ra · rb
‖ra‖‖rb‖

, ra, rb ∈ R (8)

Give an urban flow spatial map X t
cg , for each grid region

rk in the map, we calculate the POI similarity between
it and all the other regions. We choose the region pairs
whose POI similarity is larger than 0.90, and compute their
urban flows similarity to study whether two regions with
higher POI similarity also have similar urban flows. Fig. 5
shows the distribution of region pairs in terms of their urban
flow similarity when the POI similarity is larger than 0.90.
One can see that in Fig. 5a) only 2 pairs of regions whose
flow data similarity is smaller than 0.65. The number of
region pairs increases with the increase of their urban flow
similarity. This figure shows that if two regions have similar
POIs, they are highly likely to have similar urban flows.
Therefore, we conclude that the POIs are highly correlated
to urban flows and reflect the global semantic correlations
of regions.

Motivated by the above data analysis, we propose to fill
the missing urban flow data based on POI similarity be-
tween region pairs. Note that we make all the regions have
the same dimension of POI features, with each dimension
representing the number of a particular POI type. If there is
lacking of POI feature types in one region, we will fill them
with zero values. Then we normalize the POI feature values
into (0,1). For each region rk where the urban flow data is
missing, we select the region with the largest POI similarity
with region rk as the target region r∗. Next, we compute the
similarity between region rk and its target region r∗ based
on their urban flow values by Equation (8). Then, we use the
most similar urban flows to fill the missing data. Formally,
we have

srk,r∗ ≥ srk,r′ ,∀r′ ∈ Rs, rk ∈ Rt, r∗ ∈ Rs (9)

where rk is a cell region without urban flow observations,
r∗ is the region with urban flow observations whose POI
similarity is most similar to rk and r′ is an arbitrary region.
Rt,Rs are the set of regions without and with urban flow
data, respectively. Next, we fill incomplete coarse-grained
urban flow maps and the completed coarse-grained urban
flow map based on AuxCmp is denoted as Ht

auc as follows.

Ht
auc =

|Rt|∑
k=1

X t
cg,un(rk = r∗) (10)

where | · | is the size of the set.
LocCmp and AuxCmp capture local spatial and global

semantic dependencies, respectively. Next, we employ a
linear combination function as follows to integrate them:

X t
cg =W1Ht

loc +W2Ht
auc (11)

where W1 and W2 are weight parameters.

4.2 Urban Flow Data Super-Resolution Network
The urban flow data super-resolution network (SRNet) aims
to capture the complex semantic and structural associations
between coarse- and fine-grained urban flows for fine-
grained urban flows inference. As shown in the middle part
of Fig. 3, the output of data completion network is input
into SRNet. As shown in the right part of Fig. 3, SRNet
first extracts external features by Extractor. Next, ×2m with
grey dotted square is designed to upscale external features.
Then we fuse extracted external features with input data
and input it into stacked super-resolution blocks (SR block),
where each block functions as a basic upsampler for a small
scale (e.g. 2×). Different from previous super-resolution
block like linear and pyramid structure, we design a novel
stepped structure SR block to capture structural constraints.
After multiple SR blocks, we design a distributional upsam-
pling module to make sure the sum of urban flows in a
coarse-grained region being equal to the constituent regions
in the fine-grained situation. Next, we will introduce the
SRNet in details.

Feature extraction module We use the Extractor to ex-
tract the low-level features from the original feature maps.
Additionally, combining urban flows with external features
will help capture semantic correlations. The Extractor is
composed of two linear modules followed by a ReLu func-
tion. A Dropout function is between the first linear and
ReLu. Then ×2m with grey dotted square is used to upscale
feature maps to match data dimension of SR block. Finally,
extracted features with upscaling operation are fed into each
SR block for semantic constraints. Formally,

em = upm−12 (Ext(E)) (12)

where m is the number of SR block. If m = 1, e1 is fed into
the first SR block and if m = 2, e2 is fed into the second SR
block. Ext(·) is Extractor, up2(·) is 2× upscaling operation.
The superscript of the function, like m in upm−12 , is the time
for calling function, which is equal to the number of SR
blocks.

Super-resolution block Different from previous super-
resolution structure, we design a stepped structure inside
each SR block. The SR block contains multiple layers. Each
layer contains an extraction net ExNet and an upscal-
ing block UpScale to capture spatial associations between
coarse- and fine-grained urban flows.

In ExNet, we use a convolution layer followed by a
ReLu function to extract low-level features of data. In or-
der to capture spatial correlations among urban flows, we
use the ResBlock module proposed in [12] which contains
two convolution layers followed by Batch Normalization
individually, and ReLu function is in the middle. Then n
ResBlock units with the same layout take the low-level
feature maps as input and construct high-level feature maps,
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Fig. 6: Two-stage training of the proposed MT-CSR: 1) in the first stage, the data completion net is pretrained; 2) in the
second stage, the entire network are trained in an end to end manner.

which enlarge the receptive field and capture broader spa-
tial correlations field. Skip connection is used to maintain
original information, which helps avoid overfitting. After
gaining high-level feature maps, we then use a convolution
layer followed by one Batch Normalization. Note that the
number of ExNet in each layer is corresponding to the
number of layer, for example, the first layer contains one
ExNet and the second layer contains two ExNets. More
ExNets will provide larger receptive field, and thus the sum
of all layers can capture near and far spatial urban flows
features simultaneously.

In UpScale, we leverage one convolution layer followed
by a Batch Normalization. Next, a pixel shuffle module is
used to upsample the urban flow maps by 2× and then a
ReLu function is applied to achieve non-linearity. Then we
make a weighted summation of each layer in a SR block.
The main equations are shown as follow:

sr(x) = λ1up
1
2(ExN

1(x))

+ λ2up
1
2(ExN

2(x))

+ ...+ λlup
1
2(ExN

l(x))

(13)

Ht
fg = sr(Ht

m−1 + em−1) (14)

where sr(·) is the SR block, up12(·) is the 2× upscaling
operation. ExN(·) is the ExNet block and l is the number of
layers. λ1, λ2, ..., and λl are weights of different layers in an
SR block. Ht

m−1 is the input of the m-th SR block. If m = 1,
Ht

m−1 is X t
cg from CMPNet.

Distributional upsampling To upsample the fine-
grained urban flows, distributional upsampling is usually
used [12], which does not provide the exact fine-grained
flows but a flow distribution. To better reflect the structural
constrains, the flow volume in each fine-grained region is
expressed as a fraction of the flow volume in the corre-
sponding coarse-grained region. We also adopt distribu-
tional upsampling as follows:

Ht
fg,i,j = Ht

fg,i,j/

i′=bi/Nc∗N,

j′=bj/Nc∗N∑
i′=(bi/Nc−1)∗N+1,

j′=(bj/Nc−1)∗N+1

Ht
fg,i′,j′ (15)

X t
fg = upk2(X t

cg)⊗Ht
fg (16)

where Ht
fg,i,j denotes a distributional fine-grained flow

map at time t, i, j, i′, j′ represent region ID and N denotes
upsampling factor. X t

cg andHt
fg are the outputs of CMPNet

and SRNet, respectively and ⊗ is the element-wise multi-
plication operation. X t

fg is the result of fine-grained urban
flow inference.

4.3 Final Objective Function

To jointly conduct urban flow data completion and super-
resolution, we design a multi-task learning network with
two-stage training strategy shown in Fig. 6. Not consider-
ing an end-to-end framework as the gradient optimization
process is complex and it cannot make sure the superior
performance of CMPNet module. In the first stage, we first
pretrain the data completion network separately to obtain
complete coarse-grained urban flows. Then in the second
stage the two tasks are jointly conducted through fine-
tuning.

The first-stage training uses pixel loss as follows to
pretrain the data completion network.

Lp = ‖X t
cg − Yt

cg‖2F (17)

where Yt
cg is ground truth of coarse-grained urban flow

spatial map at time t.
In the second stage, we use pixel loss to train the entire

network. If we treat urban flow data completion and super-
resolution as two independent problems, we can design
such a loss function:

Lt = ‖X t
fg − Yt

fg‖2F (18)

Since urban flow data completion and super-resolution are
highly correlated and cannot achieve superior performance
if conducting such two tasks separately. Inspired by Cai
et al. [38], we conduct a multi-task learning as follows:

Lt,+ = λ1‖X t
cg − Yt

cg‖2F + λ2‖X t
fg − Yt

fg‖2F (19)

where λ1 and λ2 are hyper-parameters and Yt
fg is the

ground truth of fine-grained urban flow spatial map in the
time slot t.

5 EXPERIMENT

5.1 Experiment Setting

5.1.1 Datasets

We use four datasets for evaluation: BJTaxi, NYCTaxi, NY-
CBike and CDdidi. The statistics of the datasets are given
in Table 2. Note that we use incomplete coarse-grained
urban flows as input data, thus we artificially and randomly
remove some region values as unavailable regions. The
details of the datasets are introduced as follows.

• BJTaxi [22] This dataset contains the taxi trips in Beijing
covering from March 1 to June 30 in 2015. We partition
the entire data into non-overlapping training, validation
and test sets by a ratio of 7 : 2 : 1.
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TABLE 2: Dataset Description

Dataset BJTaxi NYCTaxi NYCBike CDdidi
Latitude / (40.71, 40.765) (40.71, 40.765) (30.655, 30.727)

Longitude / (−74.01,−73.972) (−74.01,−73.972) (104.043, 104.129)

Time span 3/1/2015-6/30/2015 1/1/2015-12/31/2015 1/1/2015-12/31/2015 11/1/2016-11/31/2016
Time interval 30 minutes 1 hour 1 hour 1 hour
Coarse-grained shape 16× 16 / 8× 8 16× 16 / 8× 8 16× 16 16× 16

Fine-grained shape 32× 32 32× 32 32× 32 32× 32

Upscaling factor 2 / 4 2 / 4 2 2
POI information ! ! ! !

• NYCTaxi1 NYCTaxi dataset contains over 160 million taxi
trip records in New York from January 1 to December
31 in 2015. Each taxi trip includes pick-up and drop-
off dates/times, pick-up and drop-off locations, trip dis-
tance, itemized fare, rate type, payment type, and driver-
reported passenger counts. For this dataset, we use the
first 11 months data for training and validation, and the
last month data for testing.

• NYCBike2 This dataset contains more than 9 million bike
trips in New York from January 1 to December 31 in 2015.
Each bike trip contains the trip duration, start/end times-
tamps, and station latitude/longitude. For this dataset,
we also use the first 11 months data for training and
validation, and the last month data for testing.

• CDdidi3 This dataset contains 1 million DiDi taxi trips
in Chengdu, China from November 1 to November 31 in
2016. Each trip contains the start-time, end-time, pickup
latitude/longitude, and dropoff latitude/longitude. For
this dataset, we use the first 22 days data for training,
6 days data for validation, and the remaining data for
testing.

• External features The used external features includes
weather data (e.g. temperature, windspeed, precipitation,
e.t.), holiday and POIs.

5.1.2 Evaluation Metrics
We use two metrics Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) defined as follows to evaluate
the performance of our MT-CSR model.

MAE =
1

T

T∑
t=0

|X t − Yt| (20)

RMSE =

√√√√ 1

T

T∑
t=0

(‖X t − Yt‖2F ) (21)

where X t is the inferred value at time t and Yt is the
corresponding ground truth.

5.1.3 Baselines
We compare MT-CSR with nine baseline methods including
statistics-based methods, image super-resolution methods
and recent state-of-the-art fine-grained urban flow inference

1. https://data.cityofnewyork.us/Transportation/2015-Yellow-Taxi-
Trip-Data/ba8s-jw6u

2. https://www.citibikenyc.com/system-data
3. https://outreach.didichuxing.com/app-vue/personal?id=1

models. The details of the methods are introduced as fol-
lows.

• Mean partition (Mean) We evenly distribute the flow
volume of a coarse-grained flow region to n × n fine-
grained regions, where n is the upscaling factor. For
example, given the flow volume 1 in a coarse-grained
region and n = 2, all the 4 corresponding fine-grained
regions share the same flow volume 0.25.

• Historical Average (HA) Similar to mean partition, we
utilize the average of historical urban flows and then
evenly distribute coarse-grained urban flows into fine-
grained ones.

• SRCNN [10] SRCNN is an end-to-end image super-
resolution algorithm. It employs bicubic interpolation
method with CNN layers. SRCNN contains patch extrac-
tion and representation, non-linear mapping and recon-
struction.

• VDSR [11] VDSR employs a deep network with depth
up to 20 and a residual network for image data super-
resolution.

• SRResNet [35] SRResnet is a generative adversarial net-
work containing a designed adversarial loss and a content
loss for image super-resolution.

• DeepLGR [14] DeepLGR is a state-of-the-art fine-grained
urban flow inference model. DeepLGR consists of local
feature extraction module, global context module and
region-specific predictor.

• UrbanPy [13] UrbanPy employs a pyramid architecture
containing multiple components. Each component func-
tions as an atomic upsampler for a small scale, which con-
tains an external factor fusion net, an inference network,
a proposal net and a correction net. UrbanPy is the most
recent state-of-the-art fine-grained urban flow inference
model.

• CmpDL CmpDL contains two parts: CMPNet module for
spatio-temporal data completion and DeepLGR model
for spatio-temporal data super-resolution. The training
strategy is as the same as our MT-CSR model.

• CmpUP CmpUP also has two parts: CMPNet module and
UrbanPy model for data completion and super-resolution
separately. And the training strategy is also as the same
as our MT-CSR model.

To study whether all the components of our model are
useful, we also compare the full version MT-CSR with its
variants as follows.

• CSR We train urban flow data completion network and
super-resolution network separately with Equation (18)
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TABLE 3: Comparison results over BJTaxi, NYCTaxi, NYCBike and CDdidi datasets. 2: upsampling factor is 2 from
16× 16 to 32× 32, 4: upsampling factor is 4 from 8× 8 to 32× 32. 20%, 40% and 60% denote the rates of the incomplete

data. The data are normalized to (0, 1).

Model Mean HA SRCNN VDSR SRRes
Net DeepLGR UrbanPy CmpDL CmpUP MT

-CSR Improve

BJTaxi

2

20%
MAE 6.72 6.78 6.17 5.93 6.19 6.32 5.91 5.54 4.62 4.61 0.22%
RMSE 11.27 11.41 10.34 9.14 10.41 10.47 9.25 9.10 7.69 7.83 -1.82%
MAPE 34.61% 34.84% 33.32% 33.82% 33.56% 35.33% 34.67% 31.82% 30.66% 28.56% 6.85%

40%
MAE 7.44 7.48 6.83 6.83 6.93 6.87 6.70 5.44 5.43 5.00 7.92%
RMSE 12.45 12.53 11.41 11.44 12.12 11.35 10.90 9.50 9.17 8.44 7.96%
MAPE 37.80% 37.98% 36.55% 36.47% 37.62% 41.42% 37.29% 30.15% 33.40% 29.51% 2.12%

60%
MAE 7.89 7.92 7.22 7.14 7.29 7.23 7.18 5.79 5.81 5.76 0.52%
RMSE 12.79 12.85 11.56 11.20 11.81 11.49 11.33 9.83 9.50 9.79 -3.05%
MAPE 40.95% 41.08% 39.90% 41.64% 39.76% 46.63% 41.29% 32.84% 37.72% 31.88% 2.92%

4

20%
MAE 6.78 7.04 7.62 76.7 76.6 7.19 5.97 7.07 5.88 5.78 1.70%
RMSE 11.50 11.90 12.34 12.40 12.07 11.6 9.09 11.33 9.75 9.75 -7.26%
MAPE 36.20% 36.56% 40.63% 41.52% 42.93% 40.46% 35.46% 38.33% 35.75% 35.45% 0.03%

40%
MAE 7.56 7.73 7.67 7.66 7.70 6.83 6.74 5.81 5.83 5.80 0.17%
RMSE 12.67 12.90 12.41 12.42 12.52 11.10 10.69 9.57 9.69 9.76 -1.99%
MAPE 39.49% 39.79% 41.10% 41.52% 41.21% 41.77% 38.46% 36.18% 36.10% 35.87% 0.64%

60%
MAE 7.81 7.97 7.91 7.90 7.90 7.14 7.13 5.84 5.84 5.71 2.23%
RMSE 12.86 13.06 12.68 12.47 12.67 11.12 11.21 9.93 9.33 9.44 -1.18%
MAPE 41.16% 41.34% 42.70% 43.92% 42.66% 37.77% 40.69% 32.82% 38.31% 37.16% -13.22%

NYCTaxi

2

20%
MAE 0.61 0.75 0.55 0.56 0.65 0.51 0.36 0.38 0.35 0.33 5.71%
RMSE 1.18 1.36 1.09 1.11 1.45 0.99 0.81 0.79 0.74 0.65 12.16%
MAPE 8.84% 10.96% 7.88% 9.50% 8.80% 7.26% 5.40% 5.60% 5.41% 5.55% -2.78%

40%
MAE 0.72 0.81 0.64 0.64 0.74 0.62 0.53 0.53 0.56 0.44 16.98%
RMSE 1.39 1.50 1.26 1.27 6.17 1.26 1.18 1.02 1.08 0.89 12.75%
MAPE 9.96% 11.41% 8.94% 9.10% 10.24% 8.76% 7.23% 8.09% 8.68% 8.64% -19.50%

60%
MAE 0.78 0.85 0.7 0.71 0.75 0.72 0.65 0.67 0.60 0.54 10.00%
RMSE 1.55 1.61 1.40 1.43 5.56 1.53 1.44 1.27 1.25 1.13 9.60%
MAPE 10.67% 11.63% 9.61% 12.70% 11.55% 8.84% 10.44% 10.50% 10.42% 10.42% 0.00%

4

20%
MAE 0.72 0.79 0.60 0.62 0.61 0.42 0.39 0.40 0.42 0.40 -2.56%
RMSE 1.32 1.43 1.20 1.23 1.25 0.87 0.83 0.80 0.79 0.75 5.06%
MAPE 10.08% 11.63% 9.17% 9.49% 10.50% 6.20% 5.51% 5.73% 6.01% 5.85% -6.17%

40%
MAE 0.77 0.82 0.64 0.66 0.67 0.51 0.51 0.51 0.51 0.5 1.96%
RMSE 1.47 1.54 1.32 1.35 1.36 1.23 1.24 1.15 1.09 1.03 5.50%
MAPE 10.45% 11.61% 9.26% 10.84% 9.95% 6.91% 7.16% 7.11% 7.30% 7.51% -8.68%

60%
MAE 0.81 0.85 0.70 0.71 0.70 0.52 0.61 0.55 0.54 0.52 3.70%
RMSE 1.56 1.60 1.42 1.43 1.43 1.24 1.39 1.18 1.10 1.04 5.45%
MAPE 10.97% 11.79% 9.73% 10.73% 9.85% 7.99% 8.21% 8.04% 8.11% 7.91% 1.62%

NYCBike 2

20%
MAE 0.41 0.49 0.35 0.38 0.35 0.41 0.19 0.23 0.21 0.17 19.05%
RMSE 1.30 1.49 1.02 1.23 1.04 1.24 0.79 0.85 0.80 0.69 13.75%
MAPE 5.73% 6.67% 5.07% 6.06% 5.70% 3.46% 3.37% 3.48% 3.08% 3.15% -2.27%

40%
MAE 0.42 0.48 0.36 0.35 0.36 0.34 0.24 0.30 0.23 0.22 4.35%
RMSE 1.39 1.53 1.10 1.09 1.09 1.04 0.95 1.07 0.93 0.89 4.30%
MAPE 5.54% 6.26% 4.94% 4.93% 5.51% 4.46% 4.79% 4.45% 3.20% 3.17% 0.94%

60%
MAE 0.44 0.47 0.38 0.38 0.38 0.37 0.30 0.31 0.31 0.28 9.68%
RMSE 1.55 1.61 1.25 1.27 1.26 1.25 1.19 1.16 1.18 1.12 3.45%
MAPE 5.36% 5.75% 4.89% 5.08% 4.97% 4.57% 4.64% 4.11% 3.95% 3.61% 8.61%

CDdidi 2

20%
MAE 0.91 1.07 0.81 0.98 0.97 1.07 0.75 1.10 0.94 0.69 8.00%
RMSE 2.05 2.26 1.79 2.19 2.31 2.28 1.62 1.77 2.13 1.55 4.32%
MAPE 11.34% 13.28% 12.39% 17.80% 12.64% 12.46% 10.26% 16.75% 12.04% 9.52% 7.21%

40%
MAE 0.98 1.10 1.02 1.06 1.02 1.11 0.98 0.93 1.09 0.86 7.53%
RMSE 2.24 2.39 2.31 2.37 2.31 2.19 1.96 2.40 2.37 1.93 1.53%
MAPE 11.75% 13.47% 12.14% 12.13% 13.97% 13.02% 9.93% 14.89% 13.77% 11.20% -12.79%

60%
MAE 1.02 1.11 1.07 1.10 1.07 1.16 1.02 1.24 1.14 0.98 3.92%
RMSE 2.34 2.46 2.40 2.48 2.41 2.30 2.10 2.00 2.50 2.22 -11.00%
MAPE 12.02% 13.28% 12.39% 17.21% 12.45% 13.37% 11.40% 13.47% 14.13% 12.25% -7.46%
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(a) Convergence speed (b) Parameter analysis

Fig. 7: Efficiency of MT-CSR model.

(a) CMPNet module analysis (b) SRNet module analysis

Fig. 8: Effectiveness on two tasks of MT-CSR model.

to examine whether the designed multi-task learning
framework can improve both tasks.

• CSR-noAux We remove the auxiliary information based
data completion module from MT-CSR to study whether
the POIs are helpful for data completion.

• CSR-noLoc We remove the local spatial information
based data completion module from MT-CSR to test
whether the local spatial information is helpful for data
completion.

• CSR-noPre We train MT-CSR with the end-to-end strat-
egy by skipping the pretraining stage.

5.1.4 Implementation Details
We implement our model as well as baselines with Pytorch
framework on NVIDIA Tesla M40 GPU, and part of the
experiment is implemented with Huawei MindSpore frame-
work. We leverage Adam algorithm for gradient descent to
perform pretraining and training process with batch size
bz = 16 and learning rate lr = 5e − 3. The model param-
eters are set as follows. In the data completion network,
the incomplete coarse-grained urban flow map X t

cg,un is
5×2×I×J for all datasets, where 5 is the previous time slot
length, 2 is the number of channels, and I × J is the size of
urban flow maps. The layer of LocCmp is 1, the convolution
kernel is 3× 3 and we use Cosine similarity in AuxCmp. In
the data super-resolution network, the number of ResBlock
block is 16 and the layer number inside each SR block is 3.

5.2 Comparison with Baselines
In this section, we compare the model performance against
baselines. To more extensively evaluate our model, we set
the ratio of incomplete data as 20%, 40% and 60% respec-
tively, and make comparison among different models under
each ratio. To illustrate the generalization ability of our
model, we set 2× and 4× upscaling factors on BJTaxi and

NYCTaxi datasets. As the NYCBike and CDdidi datasets are
relatively small and the data are sparse, we do not upscale
them with 4×.

Performance comparison. The results of different meth-
ods are shown in Table 3. The best results achieved among
all models are underlined. To more clearly show how
much improvement our model achieves, we also present
the improvement of MT-CSR comparing to the best results
achieved by baselines. It shows that MT-CSR achieves the
best result in almost all the cases. On BJTaxi dataset, MT-CSR
performs best among all the methods and the improvement
is significant. For example, when the upscaling factor is 2
and the missing ratio is 40%, MAE, RMSE and MAPE of
MT-CSR are 5.00, 8.44 and 29.51% respectively, improv-
ing by 7.92%, 7.96% and 2.21% comparing with the best
results achieved by baselines. Mean gives a bad result as
it infers urban flows by equal distribution, which ignores
both spatial correlations and temporal dependencies. HA
achieves the worst performance among all the methods. It
is not surprising because different from urban flow predic-
tion which significantly relies on a set of historical urban
flows, fine-grained urban flow inference does not rely on
historical data much. We can see that SRCNN, VDSR and
SRResNet give bad performance comparing with MT-CSR,
because they are all designed for image super-resolution,
which consider image deblurring problem but ignore spatio-
temporal correlations. DeepLGR and UrbanPy are proposed
for urban flows inference. However, both of them are ignore
data sparsity problem, thus does not perform well. One can
see that CmpUP achieves the best performance in terms of
RMSE among all the baselines on the BJTaxi dataset when
the upscaling factor is 2 and the ratios are 20% and 60%.
CmpDL performs best in terms of RMSE when the upscaling
factor is 4 and the ratio is 40%. This is because CmpUP and
CmpDL use UrbanPy and DeepLGR models respectively,
which are especially designed for fine-grained urban flow
inference. Similar to the results on the BJTaxi dataset, MT-
CSR performs best among all the methods on NYCTaxi, NY-
CBike and CDdidi datasets. CmpDL and CmpUP perform
better than other baselines on the three datasets, because
both of them integrate CMPNet module and urban flow
inference module.

Model efficiency analysis Next, we further discuss the
efficiency of our MT-CSR model. We plot the MAE loss
curves of different methods in Fig. 7(a) over BJTaxi dataset
to compare the computational efficiency of the models. The
training time for one epoch of MT-CSR, CmpUP and Cm-
pDL are 24.32, 19.73 and 18.79 seconds, respectively. The
result shows that although MT-CSR needs more running
time, it converges faster than CmpDL and CmpUP with less
number of training epochs, which confirms the efficiency of
our two-stage model MT-CSR. We also record the absolute
running time for one epoch of our model MT-CSR with 2×
and 4× upscaling factors on BJTaxi dataset. The results are
24.32 seconds and 29.66 seconds, respectively. The training
time of the model becomes longer when the upsampling
scale is larger, because a larger upscaling factor requires
we need more SR block in the SRNet module. In order to
examine the superiority of MT-CSR, we further compare
all the models in terms of their parameter size and the
corresponding MAE loss. The result is shown in Fig. 7(b).
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TABLE 4: Comparison results on initializing convolutional kernel with external features or random values over BJTaxi
dataset.

Missing 20% 40% 60%
Metric MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Random 2.00 5.64 10.63% 3.99 7.98 12.84% 5.96 9.73 11.30%
Features 1.98 5.58 10.96% 3.96 7.89 12.45% 5.95 9.65 11.22%

Fig. 9: The comparison between MT-CSR and its variants.

One can see that MT-CSR achieves the lowest MAE 4.61
compared with other models, and at the same time its pa-
rameter number is small (only slightly larger than SRCNN).
It means that MT-CSR achieves better result with a simpler
model (less number of model parameters). SCRNN has the
least number of parameters, but its MAE is high.

Model effectiveness analysis on the two tasks. To eval-
uate the effectiveness of our MT-CSR model, we firstly ex-
amine the performance of the data completion module. We
compare CMPNet module with mean completion (Mean)
and GAIN[39] on BJTaxi dataset. Mean method completes
the missing urban flows in a map with the average flows
of the entire flow map. The result in Fig. 8(a) shows that
CMPNet significantly outperforms the two baselines. The
result also shows that with the growth of missing data ratio,
less spatio-temporal information is captured by CMPNet,
leading to the increase of MAE loss. We also investigate
whether SRNet module performs better than state-of-the-
art urban flow super-resolution methods. SRNet is an urban
flow super-resolution module without data completion. We
use Equation (17) to train SRNet. We compare SRNet with
UrbanPy on BJTaxi dataset, and the result is shown in Fig.
8(b). The result shows that SRNet consistently and slightly
outperforms UrbanPy under different data missing ratios.

5.3 Comparison with Variant Models

In order to examine whether the components in MT-CSR are
all beneficial to the studied problem, we compare MT-CSR
with its variants including CSR, CSR-noAux, CSR-noLoc
and CSR-noPre on BJTaxi and NYCTaix datasets. The result
is shown in Fig. 9. One can see that MT-CSR outperforms
the four variants. It indicates that the AuxCmp module,
the LocCmp module, the pretraining stage and the multi-
task learning are all useful, and dropping any one of them
will hurt the performance. One can also observe that Aux-
Cmp module contributes most to the model performance
improvement. Over BJTaxi dataset, dropping AuxCmp will
decrease the performance by up to 20.75%, 16.11%, 10.18%
in terms of MAE for 20%, 40%, 60% missing ratios, respec-
tively. It verifies AuxCmp module is especially important

TABLE 5: The model performance with different parameter
settings over BJTaxi dataset.

λ1=1 λ1=0.1 λ1=0.01 λ1=0.001 λ1=0.0001

λ2=1 MAE 5.13 4.74 4.62 4.62 4.62
RMSE 8.65 8.22 7.92 7.86 7.84

λ2=0.1 MAE 5.49 5.27 4.65 4.62 4.61
RMSE 8.92 8.76 8.06 7.86 7.83

λ2=0.01 MAE 5.29 5.39 6.85 6.56 4.64
RMSE 8.76 8.90 11.24 10.99 7.91

λ2=0.001 MAE 5.49 5.42 5.50 8.37 4.71
RMSE 9.01 8.94 8.98 13.19 8.16

λ2=0.0001 MAE 5.41 5.45 5.38 6.91 5.26
RMSE 8.98 8.98 8.95 11.29 8.85

to fine-grained urban flow inference. The inference perfor-
mance also drops significantly when the LocCmp module is
removed, which demonstrates the importance of local infor-
mation. Moreover, we study the effectiveness of initializing
the convolutional kernel with external features in LocCmp
module. We compare the external features initialization with
random initialization. The model performance with the two
kernal initialization methods are given in Table 4. It shows
that the performance is slightly improved by initializing the
kernal with external features. (reducing MAE from 2.00 to
1.98, from 3.99 to 3.96 and from 5.96 to 5.95 when the miss-
ing flow data ratios are 20%, 40%, and 60%, respectively).
Training model with an end-to-end strategy by skipping the
pretraining stage will hurt the model performance. We can
see in Fig. 9 that the CSR-noPre performs worse than the
MT-CSR in all missing ratio on both BJTaxi and NYCTaxi
dataset, which proves the necessity of pretraining task and
our two-stage training strategy. MAE and RMSE of CSR are
both much larger than MT-CSR when the incomplete data
ratios are 20%, 40% and 60%, which means that the designed
multi-task learning framework improves the task. MT-CST
combines all these components together and achieves the
best performance. Thus one can conclude that the well-
designed components in MT-CSR are all useful for the fine-
grained urban flow inference problem.

5.4 Parameter Sensitivity Analysis

We next study how sensitive the model is to the deep neural
network structure with different parameters. As shown in
Table 5, we analyze two hyper-parameters: λ1 and λ2 in
the final objective function formula (19). We set λ1 and λ2
ranging from 1 to 1e-4, respectively. As one can see, with
larger λ1 value, the loss value increases. On the contrary,
the loss value decreases with larger λ2 value. The results
shows that SRNet is more important than CMPNet in the
training process and we ought to finetune CMPNet slightly.
Therefore, in our experiment, we set λ1 = 1e − 4 and λ2 =
1e− 1, which achieves a better performance.
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Fig. 10: Visualization of the urban flows inference results with different methods on the four datasets. The input is
(16× 16) and output is 32× 32. The cell regions in white color denote that the urban flow data are unavailable.

(a) Inflow data on BJTaxi dataset on region r1,8. (b) Inflow data on NYCTaxi dataset on region r0,0.

(c) Inflow data on NYCBike dataset on region r6,23. (d) Inflow data on CDdidi dataset on region r0,14.

Fig. 11: Inference vs ground truth of inflow data on BJTaxi, NYCTaxi, NYCBike and CDdidi datasets.

Fig. 12: Visualization of the MT-CSR urban flows inference
in Beijing at 2015/6/20 08:30.

5.5 Visualization and Case study

To further intuitively show the model performance, we
visualize the inference results with different models and the
ground truth. Fig. 10 shows the heat maps of fine-grained
urban flow inference results with different models on the
four datasets. All input data is 16 × 16 with 20% missing
ratio and the upsampling factor is 2. Taking the results on

BJTaxi dataset as an example, SRCNN using bicubic inter-
polation cannot capture the complex spatial correlations,
thus gives a blurry inference. VDSR employing a very deep
neural network can easily obtain the general structure of
an image. However, its fine-grained urban flow inference is
detail-missing. Though SRResNet model enhances VDSR,
the designed losses are all useful for content and style
of images and even are designed for color distortion. But
urban flow observations do not have such characteristics.
Thus SRResNet gives an inferior performance on fine-
grained urban flow inference. DeepLGR and UrbanPy are
superior in inferring fine-grained urban flows when urban
flow observations are all available. Thus, DeepLGR and
UrbanPy both perform less promising especially for the
regions without crowd flow observations. It is obvious that
CmpDL and CmpUP perform better than DeepLGR and
UrbanPy separately, for both of them consider incomplete
data and then add data completion process. However, they
still loss some details. Therefore, according to the ground
truth of fine-grained urban flow inference, our method MT-
CSR gives the superior performance.

To study the scenario that the urban flow data are more
likely to be unavailable in suburb regions, next we give
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a case study by randomly removing some values in the
regions of suburbs and test the model performance. We
select the suburb regions in Beijing at 8:30 am on June 20
in 2015, and the result is shown in Fig. 12. As one can
see, red squares denote suburb regions where the flow data
are missing. After data inference with MT-CSR, the fine-
grained urban flows are inferred as shown in the right part
of the figure. The ground truth is given below the inference
result. Compared with the ground truth, the inference result
is fairly accurate with small errors. This case study shows
that our two-stage MT-CSR model can give accurate fine-
grained urban flow inference for the suburb regions where
the avaiable flow data are sparser.

To present how close the inferred fine-grained flows are
to the ground truth, we visualize the prediction and the
ground truth in Fig. 11. From top to bottom, the four figures
show the BJTaxi inflow, NYCTaxi inflow, NYCBike inflow
and CDdidi inflow, respectively. One can see that the orange
curves which are the inferred fine-grained flows can trace
the blue curves of the ground truth accurately, including
sudden changes, which illustrates that our model MT-CSR
can accurately infer the fine-grained urban flow data.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed an urban flow completion and
super-resolution network for fine-grained urban flow infer-
ence with sparse and incomplete data. MT-CSR addressed
three challenges which were significant to fine-grained ur-
ban flow inference process, including the incomplete urban
flows, the complex associations between fine- and coarse-
grained data and jointly conducting the two tasks. Extensive
evaluations on four real large datasets showed that the
proposed model significantly enhanced the performance
and outperformed the state-of-the-art models. Studies and
visualizations also confirmed the efficiency and effective-
ness of our MT-CSR model.

In the future, it would be interesting to explore a more
effective urban flow data completion method. Our MT-CSR
model is designed for regular regional division of fine-
grained flow inference. It is an interesting problem that
how to extend the proposed method to irregular regions. A
potential solution is that we model the urban flows among
irregular regional as graphs, and employ graph neural
networks to solve the problem. We will consider it as our
future work. We are also interested in further optimizing the
model framework. We will consider whether we can design
a better deep learning architecture to further improve the
performance of fine-grained urban flow inference.
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