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Abstract

Accurate forecasting of citywide traffic flow has been play-
ing critical role in a variety of spatial-temporal mining appli-
cations, such as intelligent traffic control and public risk as-
sessment. While previous work has made significant efforts
to learn traffic temporal dynamics and spatial dependencies,
two key limitations exist in current models. First, only the
neighboring spatial correlations among adjacent regions are
considered in most existing methods, and the global inter-
region dependency is ignored. Additionally, these methods
fail to encode the complex traffic transition regularities ex-
hibited with time-dependent and multi-resolution in nature.
To tackle these challenges, we develop a new traffic predic-
tion framework–Spatial-Temporal Graph Diffusion Network
(ST-GDN). In particular, ST-GDN is a hierarchically struc-
tured graph neural architecture which learns not only the local
region-wise geographical dependencies, but also the spatial
semantics from a global perspective. Furthermore, a multi-
scale attention network is developed to empower ST-GDN
with the capability of capturing multi-level temporal dynam-
ics. Experiments on several real-life traffic datasets demon-
strate that ST-GDN outperforms different types of state-of-
the-art baselines. Source codes of implementations are avail-
able at https://github.com/jill001/ST-GDN.

Introduction
Accurate forecasting of traffic flow across different geo-
graphical regions in a city, have played a critical role in
smart transformation systems, such as intelligent transporta-
tion (Wei et al. 2018; Huang et al. 2020) and public risk as-
sessment (Gao et al. 2019; Huang et al. 2018). For example,
in disaster control, by predicting future traffic volume, local
governments and communities is able to design better trans-
portation scheduling and mobility management strategies, to
mitigate the tragedies caused by the crowd flow (Zhao et al.
2017). In general, the objective of traffic prediction is to
forecast the traffic volume (e.g., inflow and outflow of each
region), from past traffic observations (Diao et al. 2019).
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With the advancement of deep learning techniques, many
efforts have been devoted to developing traffic predic-
tion methods with various neural network architecture for
spatial-temporal pattern modeling. Inspired by the sequence
learning paradigm, recent neural networks have been uti-
lized to model temporal effects of traffic variations (Liu
et al. 2016; Yu et al. 2017). To make use of spatial fea-
tures, some research work propose to adopt convolutional
neural network to model correlations between adjacent re-
gions (Zhang, Zheng, and Qi 2017), along with using re-
current neural layers on the temporal dimension (Yao et al.
2018). Although both spatial and temporal correlations have
been considered in existing methods, several key challenges
have not been well addressed.

In real-life scenarios, traffic flow pattern is often com-
plex and multi-periodic (Zhang, Zheng, and Qi 2017; Deng
et al. 2016), as different views with respect to time resolu-
tions (e.g., hourly, daily, weekly) reflect the traffic dynamics
from different temporal dimensions. The captured tempo-
ral patterns are often complementary with each other (Wu
et al. 2018). Hence, learning accurate representations of traf-
fic variation patterns requires the collaboration of multi-
ple views with different time resolutions. While recurrent
neural network-based approaches have achieved good per-
formance on various spatial-temporal sequence prediction
tasks, they can only be effective for short-term, smooth dy-
namics and can hardly make predictions over the high-order
multi-dimensional time horizons.

Most current forecasting approaches merely focus on
modeling nearby geographical correlations (Yao et al. 2018;
Zhang, Zheng, and Qi 2017), while ignoring the cross-region
inter-dependencies under a global context. For example, two
geographical areas with similar urban functions (e.g., shop-
ping zone or transportation hub) can be correlated in terms
of their traffic distribution, although they are not spatially
adjacent or even far away from each other (Shen et al. 2018;
Wang and Li 2017). Hence, the learned region-wise rela-
tional structures without the global-level traffic transition in-
formation, are insufficient to distill not only local geograph-
ical dependencies, but also global relations across regions,
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which leads to suboptimal predictions results.
To tackle the above challenges, we propose a new predic-

tive framework Spatial-Temporal Graph Diffusion Network
(ST-GDN), for region-specific traffic flow. In ST-GDN, we
develop a multi-scale self-attention network to investigate
multi-grained temporal dynamics across various time reso-
lutions, in order to encode temporal hierarchy of traffic tran-
sitional regularities. To promote the collaboration of differ-
ent granularity-aware temporal representations, an aggrega-
tion layer is proposed to model the underlying dependencies
across multi-level temporal dynamics. In addition, the devel-
oped hierarchical graph neural network via attentive graph
diffusion paradigm, endows the ST-GDN with the capability
of incorporating spatial semantics from local-level spatially
adjacent relations to global-level traffic pattern representa-
tions across the city in a joint way.

We highlight the key contributions of this work as below:
• We highlight the critical importance of explicitly explor-

ing the multi-resolution traffic transitional information
and local-global cross-region dependencies, in studying
the traffic prediction problem.

• We propose a new traffic prediction framework (ST-GDN)
which explicitly embeds multi-level temporal contextual
signals into granularity-aware latent representations, with
the cooperation of the designed multi-scale self-attention
network and temporal hierarchy aggregation layer.

• ST-GDN preserves both local and global region-wise de-
pendencies, via a hierarchically structured graph neural ar-
chitecture which is consisted of a graph attention network
and convolution-based graph diffusion mechanism.

• Our extensive experiments on three real-world datasets
demonstrate that ST-GDN outperforms baselines of dif-
ferent types in yielding better forecasting performance.
Furthermore, model efficiency study is conducted for ST-
GDN in the traffic prediction process.

Problem Definition
In this section, we begin with some key definitions and pre-
liminary terms which are relevant to the solution.
Definition 1 Spatial Region. We partition a city into I × J
disjoint grids (given the geographical coordinates), in which
each grid is regarded as a spatial region ri,j (i ∈ [1, ..., I ],
j ∈ [1, ..., J ]). ri,j is our target unit for traffic prediction.
Definition 2 Traffic Flow Tensor. After the grid-based par-
tition, we represent the citywide traffic volume distributions
across regions during past T time slots as a three-way ten-
sor: X ∈ RI×J×T , where each entry xti,j denotes the traffic
volume measurement at region ri,j in the t-th time slot (e.g.,
hour or day). To study the prediction on both the incoming
and outgoing traffic follow, we generate two traffic flow ten-
sors: Xα (incoming) and Xβ (outgoing), respectively.
Task Formulation. Based on the aforementioned defini-
tions, the traffic prediction problem is formulated as: In-
put: the observed traffic volume information during past
T time slots across the entire city Xα ∈ RI×J×T and
Xβ ∈ RI×J×T . Output: a predictive function which effec-
tively infers the unknown future traffic volume of regions.

Methodology
This section presents the our ST-GDN with the descriptions
of different components (as shown in Figure 1).
Temporal Hierarchy Modeling
We first propose a multi-scale self-attention network to
jointly map multi-level temporal signals into common latent
representations, for capturing the complex traffic patterns.

Definition 3 Temporal Resolution p. We define p to indi-
cate how often we sample traffic volume measurement xti,j
from the overall traffic flow tensor X, i.e., the time difference
between two consecutive data points xti,j and xt

′

i,j measured
from region rm,n. For example, (t′ − t) can be a hour, a day
or a week, given the resolution p is set as hourly, daily and
weekly, respectively, i.e., p ∈ {hour, day, week}.

Given each temporal resolution p, we could generate
resolution-aware traffic series xTp

i,j , where Tp is the corre-
sponding traffic series length with the resolution of p. Then,
we propose a self-attentive network to encode the traffic
variation patterns from the temporal dimension. In partic-
ular, our encoder is built upon the scaled dot-product atten-
tion architecture with three transformation matrices: query
(Q ∈ RTp×d), key (K ∈ RTp×d) and value (V ∈ RTp×d)
matrices. The resolution-aware attentive aggregation mech-
anism can be formally presented with the matrix calculation:

Q = Ep ·WQ,K = Ep ·WK ,V = Ep ·WV . (1)

We further perform the operation of Yp = σ( QKT
√
d

)V, where
ypi,j ∈ Yp and ypi,j ∈ Rd denotes the learned resolution-
aware hidden representation of region ri,j . Ep ∈ R|R|×d is
the initialized embeddings of all regions ri,j ∈ R. Addi-
tionally, σ(·) denotes the softmax function. Here, WQ, WK ,
WV are projection matrices.

Traffic Dependency Learning with Global Context
The goal of this step is to exploit the global-level dependen-
cies across different regions in terms of their dynamic traffic
transition patterns. Towards this end, we first define a region
graph G = (R,E), in which R is the region set and E de-
notes the pairwise relationships between two spatial regions.
Motivated by the attention-based neural network in encod-
ing the dependencies among regions (Huang et al. 2019), we
develop an attentive aggregation mechanism to capture both
local and global traffic dependency between regions. Specif-
ically, we perform the message aggregation over G with the
following attentive operations.

mp
(i,j)←(i′,j′) =

H∣∣∣∣∣∣
h=1

ωh(i,j);(i′,j′) · Y
p ·Wp (2)

where mp
(i,j)←(i′,j′) is the feature message propagated from

region ri′,j′ to ri,j . Here, we endow the cross-region rel-
evance encoding with multi-head (h ∈ [1, ...,H ]), to cap-
ture the region-wise relation semantic from different learn-
ing subspaces. Furthermore, Wp ∈ Rd×d is the parameter-
ized projection matrix. The underlying attentive relevance
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Figure 1: The framework of our developed spatial-temporal graph diffusion networks.

ωh(i,j);(i′,j′) is formally estimated as follows:

ωh
(i,j);(i′,j′) =

exp(LR(αT [ỹp
i,j ||ỹ

p
i′,j′ ]))∑

(i′,j′)∈N (i,j) exp(LR(αT [ỹp
i,j ||ỹ

p
i′,j′ ]))

where we perform concatenation between ỹpi′,j′ and ỹpi′,j′
(ỹpi′,j′ = ypi′,j′ · Wp). Then, the attentive coefficient vec-
tor α is incorporated with the production. LR(·) denotes the
LeakyReLU function. Based on the constructed message and
learned quantitative region-wise relevance score ω(i,j);(i′,j′),
we perform the information aggregation as:

zpi,j = f(
∑

ri′,j′∈Ni,j

mp
(i,j)←(i′,j′)) (3)

where zpi,j is the aggregated feature embedding of ri,j .
High-order Information Propagation. The information
aggregation from the (l)-th layer to the (l+ 1)-th layer with
the high-order relation modeling is represented as:

zp,(l+1)
i,j ← Aggregate

i∈Nu(j);j′∈Nv(j)

(
Propagate(zp,(l)i,j , G)

)
(4)

Propagate(·) and Aggregate(·) denotes the message con-
struction and information fusion, respectively. We finally
generate the global-level representation of region ri,j as:
zpi,j = zp,(l)i,j ⊕ ...⊕ zp,(L)

i,j . ⊕ is the element-wise addition.

Region-wise Relation Learning with Graph
Diffusion Paradigm
In addition to the global dependencies across different re-
gions in terms of their traffic evolving patterns, we further
incorporate spatial relationships between regions into our
prediction framework. Particularly, motivated by (Li et al.
2018), we develop a graph-structured diffusion network to
refine the learned resolution-aware region representations
zpi,j from the above graph attention module. We generate an-
other region-wise relation graph Gs = (Rs, Es, A) which

jointly preserves the geographical adjacent relations (ri,j’s√
K ×

√
K = K neighboring regions) and high traffic de-

pendencies (larger ω(i,j);(i′,j′) value). A denotes the adja-
cent matrix weighted by a vertex distance function. Here, we
define Do = A · I to denote the out-degree diagonal matrix,
where I is the identify matrix of Gs. The designed diffusion
convolution operation performs the diffusion process across
nodes in Gs to generate new feature representations:

f(zpi,j)Θ =
K−1∑
k=0

(θk,1(D−1
o A)k + θk,2(D−1

i Aᵀ)k)zpi,j (5)

where θk,1, θk,2 ∈ RK×2. D−1
o A (in-degree) and D−1

i Aᵀ)
(out-degree) denote the bi-directional transition matrices of
the diffusion process, which corresponds to the inflow and
outflow in our prediction scenario. The parameter tensor de-
noted as Θ ∈ RQ×d×K×2, in which the Q-dimensional out-
put Λp ∈ R|R|×Q of diffusion convolutional layer is given:

Λp
q = LeakyReLU

( d∑
d′=1

f(Zp
d′)Θq,d′

)
(6)

where q ∈ {1, ..., Q}. The obtained region representation
Λp
i,j jointly preserves the temporal (traffic time-varying pat-

terns) and spatial (geographical relations) contextual signals
under a global perspective.

We next aggregate the resolution-aware traffic representa-
tion Λp

i,j by introducing a gating mechanism. To be specific,
our gated aggregation mechanism conducts the parametric
matrix-based sum operation over the multi-resolution traffic
pattern representations, i.e., hourly (Λph ), daily (Λpd ) and
weekly (Λpw ) as: Λi,j = Wh◦Λh

i,j+Wd◦Λd
i,j+Ww◦Λw

i,j .
Here, the trainable transformation matrices are denoted as
Wh, Wd and Ww corresponding to hourly, daily and weekly
patterns. We finally generate the conclusive multi-resolution
traffic representation Λi,j which preserves multi-grained
temporal hierarchy of traffic regularities.
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Traffic Prediction Phase
In urban sensing, there exist external factors (e.g., me-
teorological conditions) which impact traffic transitional
regularities. Thus, we further augment our ST-GDN with the
capability of fusing external factors. In particular, we con-
sider several types of external factors: Weather conditions,
Temperature/◦C, Wind speed/mph. We map these features
into vectors gt. After that, we utilize a multi-layer per-
ceptron framework to perform projection over ĝt. Finally,
we feed the concatenated embedding (Λi,j and ĝt) into
the prediction layer to infer the traffic volume of each region.

Optimized Loss Function. We define our loss function with
the joint consideration of inflow and outflow traffic volume
of each region in a city as below:

L =
I−1∑
i=0

J−1∑
j=0

λ[(x̄αi,j,t)− (xαi,j,t)]
2

+(1− λ)[(x̄βi,j,t)− (xβi,j,t)]
2

(7)

where x̄αi,j,t and x̄βi,j,t denote the estimated incoming and
outgoing traffic volume of region ri,j at the t-th time slot,
respectively. Their influences are decided by λ. Ground
truth information are represented xαi,j,t and xβi,j,t.

Model Complexity Analysis. In this part, we analyze the
time complexity of our ST-GDN framework. Particularly,
the multi-scale self-attentive network takes O(3 × T × I ×
J × d) for learning query, key and value matrices, and
O(3×T 2×d) for weighted summation. The next attentional
graph module takes O(3× I2×J2× d′) to estimate the rel-
evance scores and perform feature aggregation, which dom-
inates the computational cost of our ST-GDN. Additionally,
the graph diffusion-based spatial relation modeling compo-
nent takes O(K × |Es|) complexity.

Evaluation
In this section, we evaluate the performance of ST-GDN on
a series of experiments on several real-world datasets, which
are summarized to answer the following research questions:
• RQ1: How is the overall traffic prediction performance of

ST-GDN as compared to various baselines?
• RQ2: How do designed different sub-modules contribute

to the model performance?
• RQ3: How does ST-GDN perform w.r.t different time

granularity configurations for temporal context modeling?
• RQ4: What is the influence of hyperparameter settings?
• RQ5: How is the model efficiency of ST-GDN?

Experimental Settings
Data Description. Experiments are performed on three
real-world traffic datasets, which are summarized in Table 1:
BJ-Taxi (Zhang, Zheng, and Qi 2017). There are 34,000+
processed taxi trajectories included in this data. Each trajec-
tory is mapped into one of 32× 32 grid-based geographical
regions. The traffic volume is measured every half an hour.

NYC-Taxi (Yao et al. 2019). This data contains 22,000,000+
taxi trajectories collected from 01/01/2015 to 03/01/2015 in
New York City with a 10 × 20 grid map. The traffic data
sample period is also half an hour.
NYC-Bike (Zhang, Zheng, and Qi 2017). It includes the tra-
jectories of the bike system from New York with a 16 × 8
grid map. Traffic volume is estimated on a hourly basis.

Evaluation Protocols. We leverage two representative
metrics for evaluation: Root Mean Squared Error (RMSE)
and Mean Absolute Percentage Error (MAPE).

Methods for Comparison. In the comparison, we con-
sider the following baselines with various model structures.
• ARIMA (Pan, Demiryurek et al. 2012). it is a representa-

tive method for forecasting time series data.
• Support Vector Regression (SVR) (Chang and Lin

2011): another traditional time series analysis model via
learning feature mapping functions.

• Fuzzy+NN (Srinivasan, Chan, and Balaji 2009): it inte-
grates the feed-forward neural layers with the fuzzy input
filter to model the traffic patterns.

• RNN (Liu et al. 2016): it leverages the recurrent neural
networks for capturing both the spatial and temporal ef-
fects for making sequential data prediction.

• LSTM (Yu et al. 2017): it jointly models the normal and
abnormal traffic variations based on stacked long short-
term memory networks.

• DeepST (Zhang et al. 2016): it utilizes the convolution
neural network to encode the spatial correlations between
regions over a citywide grid map.

• ST-ResNet (Zhang, Zheng, and Qi 2017): the residual
connection technique is employed to alleviate overfitting
issue for spatial-temporal prediction.

• DMVST-Net (Yao et al. 2018): it integrates the graph em-
bedding method with the joint convolutional recurrent net-
works to capture spatial-temporal signals

• DCRNN (Li et al. 2018): it is a data-driven forecasting
framework with diffusion recurrent neural network to cap-
ture the spatial-temporal dependencies.

• STDN (Yao et al. 2019): it designs a periodically shifted
attention for learning transition regularities of traffic.

• ST-GCN (Yu, Yin, and Zhu 2018): it is an integrative
framework of graph convolution network and convolu-
tional sequence modeling layer for modeling spatial and
temporal dependencies.

• ST-MGCN (Geng et al. 2019): it develops a multi-modal
graph convolutional network to capture region-wise non-
Euclidean pair-wise correlations.

• GMAN (Zheng et al. 2020): it is a encoder-decoder traffic
prediction method based on the graph multi-attention.

• UrbanFM (Liang et al. 2019): it is a deep fusion network
to model traffic flow distributions.

• ST-MetaNet (Pan et al. 2019): it is a meta-learning ap-
proach to perform knowledge transfer across series with a
recurrent graph attentive network.
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Dataset BJ-Taxi NYC-Taxi NYC-Bike External Factors Beijing New York City

Data type Taxi GPS Taxi GPS Bike Rental Weather sunny, rainy et al. sunny, rainy et al.
Time interval 30 minutes 30 minutes one hour Temperature/◦C [−24.6, 41.0] [−10.3, 31.40]
Gird map size 32×32 10×20 16×8 Wind speed/mph [0, 48.60] [0, 63.75]
# of records 34,000+ 22,000,000+ 6,800+ holidays weekends, holidays weekends, holidays

Table 1: Statistical information of experimented datasets.
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Figure 2: Model ablation study of ST-GDN framework in terms of RMSE and MAPE.

Parameter Settings. The ST-GDN is implemented with
Tensorflow. The training phase is performed using the Adam
optimizer with the learning rate of 1e−3 and batch size
of 32. The embedding dimension size d and the depth re-
cursive graph neural layers L are set as 64 and 3, respec-
tively. We select the input sequence length from the range
of {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5, 6}, which re-
spectively corresponds to three different time resolutions
(hour–Th, day–Td and week–Tw). We stack three feed-
forward layers in the final prediction phase. The experiments
of most baselines are performed with their released code.

Performance Comparison (RQ1)

Performance Superiority of ST-GDN. The comparison re-
sults of all methods are presented in Table 2. We can observe
that ST-GDN consistently yields the best performance in all
cases, which demonstrates the effectiveness of our ST-GDN
in jointly modeling of multi-level temporal dynamics and
global-level region-wise dependencies. Figure 3 visualize
the prediction error ([(x̄i,j,t) − (xi,j,t)]

2) of our ST-GDN
and five best performed baselines on BJ-taxi data, where
a brighter pixel means a larger error. The superiority of
ST-GDN can still be observed, which is consistent with the
quantitative results in Table 2.

Performance Comparison between Baselines. Compared
with conventional time series approaches, neural network-
based models perform better in most evaluation cases. The
subsequent attention-based and recurrent-convolutional net-
work methods (e.g., STDN, DMVST-Net) obtain better per-
formance than recurrent neural models (e.g., D-LSTM),
which justifies the necessity to simultaneously capture both
spatial and temporal relations in traffic prediction. Among
various baselines, GNN-based methods have better perfor-
mance than other types of competitors, which ascertains the
rationality of designing graph-structured information aggre-
gation mechanism to fuse spatial and temporal signals.

(a) ST-GCN (b) ST-MGCN (c) ST-MetaNet

(d) DCRNN (e) GMAN (f) ST-GDN

Figure 3: Visualization for Traffic Prediction Errors.

Comparison with Variants (RQ2)
We perform ablation experiments to analyze the effects of
sub-modules in our ST-GDN framework with five variants:
• ST-GDN-s: ST-GDN without the multi-scale self-attention

network to capture multi-level traffic dynamics.
• ST-GDN-g: ST-GDN without the graph attention module

to model the global region-wise traffic dependencies.
• ST-GDN-d: ST-GDN without the graph diffusion network

to integrate spatial context with cross-region traffic pattern
correlations for representation recalibration.

• ST-GDN-n: ST-GDN without the incorporation of neigh-
borhood spatial context into the graph diffusion.

• ST-GDN-e: ST-GDN without the external factor fusion.
The evaluation results are shown in Figure 2. We can ob-

serve that the joint version of ST-GDN outperforms other
variants consistently. Hence, each designed sub-modules has
positive effects for prediction performance improvement. It
is necessary to build a joint framework to collectively in-
tegrate the multi-resolution traffic temporal patterns, global
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Datasets BJ-Taxi NYC-Bike NYC-Taxi
Metrics RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)
Methods In Out In Out In Out In Out In Out In Out
ARIMA 22.10 24.01 30.89 32.24 9.30 11.81 35.82 36.47 27.21 36.54 20.90 22.18

SVR 21.44 22.12 22.64 22.32 8.65 9.07 23.58 24.10 26.16 34.71 18.25 21.01
Fuzzy+NN 22.35 23.06 22.67 22.73 8.56 9.17 24.03 24.48 25.98 34.50 18.92 21.54

RNN 27.16 27.90 24.17 24.72 8.99 9.24 28.22 28.58 29.88 37.23 25.97 26.55
LSTM 26.99 27.56 23.64 24.17 8.64 9.10 27.51 28.07 29.52 37.04 25.81 26.11

DeepST 19.30 21.06 22.45 22.52 7.66 8.16 22.81 23.21 23.56 26.79 22.34 22.39
ST-ResNet 17.00 22.31 23.51 23.74 6.28 6.61 23.92 24.79 21.72 26.30 21.12 21.24

DMVST-Net 16.61 17.14 22.52 23.06 5.82 6.09 22.45 23.67 20.63 25.80 17.19 17.44
STDN 15.19 18.63 21.04 22.13 4.50 5.92 21.71 22.61 19.31 24.19 16.43 16.59

UrbanFM 15.18 18.42 20.54 20.88 3.99 4.64 21.59 22.47 19.11 24.14 16.34 16.46
ST-MetaNet 15.06 18.29 19.91 20.74 3.85 4.64 21.26 22.18 18.30 23.88 16.19 16.27

DCRNN 15.13 18.37 20.14 20.88 3.86 4.65 21.14 21.05 18.19 23.74 16.11 16.16
ST-GCN 15.11 18.30 19.92 20.77 3.76 4.70 21.12 21.94 18.02 23.08 15.94 15.92

ST-MGCN 15.08 18.25 19.96 20.70 3.75 4.63 21.04 21.95 17.97 23.00 15.87 15.91
GMAN 15.07 18.23 19.97 20.68 3.73 4.64 21.02 21.93 17.95 22.96 15.84 15.89

ST-GDN 14.57 17.56 19.03 20.27 3.00 3.97 20.48 21.31 17.10 22.09 15.17 15.29
Table 2: Performance comparison of all methods on three datasets in terms of RMSE and MAPE.

region-wise traffic dependencies, and regions’ geographical
relations, into the spatial-temporal traffic pattern modeling.

Multi-Resolution Temporal Effects (RQ3)
In this subsection, we study the effects of different temporal
resolution settings in our integrative architecture of multi-
scale self-attention network and cross-resolution pattern ag-
gregation layer, with the following contrast models:

• ST-GDNh: P ∈ {hour/30mins}
• ST-GDNh,d: P ∈ {hour/30mins, day}
• ST-GDNh,w: P ∈ {hour/30mins,week}
• ST-GDNh,d,w: P ∈ {hour/30mins, day, week}

We present the study results in Figure 4. As we can seen,
the best prediction accuracy is achieved by ST-GDNh,d,w

which is configured with more resolutions. Leaning the tem-
poral hierarchy with hourly and daily/weekly traffic patterns
(ST-GDNh,d, ST-GDNh,w) provide better results as com-
pared to the variant with singular-dimensional time granu-
larity (ST-GDNh). Overall, decomposing the temporal ef-
fects into more multiple resolution-specific feature represen-
tations is helpful for more accurate modeling of traffic tem-
poral regularity and resolution-aware region relations.

Parameter Sensitivity (RQ4)
Depth of Graph Attention Network L. We can notice that
increasing the depth of our graph attention module by stack-
ing multiple embedding propagation layers could boost the
performance. The results also indicate that exploring third-
order relations among region entities is sufficient to capture
the global traffic dependencies.
Length of Encoded Input Sequence T . The performance
is initially improved with the increase of Th and Td, since
longer traffic series can provide more useful temporal infor-
mation. However, the further increasing of sequence length
may introduce noise which mislead the traffic modeling.

Kernel Size K. We vary the kernel size to investigate the
convolution operations in our graph diffusion process. We
can observe that K = 3 achieves the best performance.
Channel Dimensionality. The results suggest that larger
channel dimension size does not always bring the stronger
representation ability, due to the overfitting issue.

Model Efficiency Study (RQ5)
We finally investigate the model efficiency (measured by
running time) of our ST-GDN. All experiments are con-
ducted with the default parameter configurations on a single
NVIDIA GeForce GTX 1080 Ti GPU. We observe that in
several best performed baselines, ST-GCN has good predic-
tion accuracy and running speed. Our ST-GDN outperforms
most of compared approaches and could achieve competi-
tive efficiency as compared to ST-GCN, i.e., the attention-
based graph embedding propagation layer has higher com-
putational cost than the adjacent matrix-based graph convo-
lution. Considering the prediction accuracy comparison be-
tween ST-GDN and ST-GCN, the additional computational
cost could bring positive effect via learning global region
inter-dependencies in an explicit manner.

We finally investigate the efficiency (measured by running
time) of our ST-GDN. Table 3 presents the computational
cost of training (with 300 epochs) and inference phase for
ST-GDN and five best performed baselines on three different
datasets. All experiments are conducted with the default pa-
rameter configurations on a single NVIDIA GeForce GTX
1080 Ti GPU. We can observe that ST-GDN outperforms
most of compared approaches and could achieve competi-
tive efficiency as compared to ST-GCN, i.e., the attention-
based graph embedding propagation layer has higher com-
putational cost than the adjacent matrix-based graph convo-
lution. Considering the prediction accuracy comparison be-
tween ST-GDN and ST-GCN, the additional computational
cost could bring positive effect via learning global region
inter-dependencies in an explicit manner.
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Figure 4: Multi-resolution temporal effect studies.
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Figure 5: Hyper-parameter study on NYC-Taxi data in terms of RMSE.

Methods Training
BJ-Taxi NYC-Taxi NYC-Bike

ST-MetaNet 16121.01 1298.55 1020.14
DCRNN 7996.24 981.36 705.64
ST-GCN 4088.90 744.65 500.40

ST-MGCN 8263.27 1023.29 789.71
GMAN 7368.31 854.66 547.12
ST-GDN 7625.19 891.63 569.26

Methods Inference
BJ-Taxi NYC-Taxi NYC-Bike

ST-MetaNet 0.42 0.32 0.29
DCRNN 0.26 0.24 0.21
ST-GCN 0.25 0.22 0.19

ST-MGCN 0.31 0.27 0.25
GMAN 0.25 0.23 0.19
ST-GDN 0.26 0.23 0.20

Table 3: Model Efficiency Study.

Related Work
Traffic Prediction with Deep Learning. Recently, many
efforts have been devoted to developing traffic prediction
techniques based on various neural network architectures.
One straightforward solution is to apply the recurrent neural
networks (e.g., LSTM) to encode the temporal features of
traffic series (Yu et al. 2017; Liu et al. 2016). The subse-
quent extensions propose to integrate the recurrent neural
layers with the convolutional network (Zhang, Zheng, and
Qi 2017; Yao et al. 2018) or attention mechanism (Yao et al.
2019), so as to joint model the spatial-temporal signals.
In addition, some hybrid methods have been proposed for
traffic prediction with the exploration of heterogeneous
data fusion (Liang et al. 2019) and meta-learning-based
knowledge transfer (Pan et al. 2019). Different from these
work, ST-GDN endows the spatial-temporal pattern rep-
resentation process with the preservation of hierarchical

temporal dynamics and global-enhanced region-wise de-
pendencies. While there exist research work that considers
the global dependency among regions (Zhang et al. 2020),
it is limited in its separately modeling of traffic dependency
and nearby region relations based on convolution neural
network. In this work, ST-GDN incorporates the global
context enhanced region-wise explicit relevance into a graph
diffusion paradigm to capture comprehensive high-order
region dependencies in a joint learning manner.

Graph-based Spatial-Temporal Prediction. It is worth
mentioning that several recent efforts have investigated
Graph Neural Networks (GNNs) for spatial-temporal data
forecasting (Guo et al. 2019; Song et al. 2020). For exam-
ple, ST-GCN (Yu, Yin, and Zhu 2018) and ST-MGCN (Geng
et al. 2019) proposes to leverage graph convolution network
to model correlations between regions. Furthermore, atten-
tion mechanism has been introduced for information aggre-
gation from adjacent roads (Zheng et al. 2020; Wang et al.
2020). Motivated by these work, we develop a hierarchical
graph neural architectures to promote the cooperation be-
tween the multi-resolution temporal context with the cross-
region inter-correlations, which have not been well explored
in existing solutions.

Conclusion
This work investigates the traffic prediction problem by
proposing a new architecture (ST-GDN) based graph neu-
ral networks. Specifically, it first designs a resolution-aware
self-attention network to encode the multi-level temporal
signals. Then, the local spatial contextual information and
global traffic dependencies across different regions, are sub-
sequently integrated to enhance the spatial-temporal pat-
tern representations. Comprehensive experiments demon-
strate that the proposed ST-GDN significantly outperforms
many baselines over several datasets consistently. Our future
work lies in the deployment of our developed prototype in a
cloud-based working system for real-time traffic prediction.
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