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Abstract—Predicting flows (e.g., the traffic of vehicles, crowds, and bikes), consisting of the in-out traffic at a node and transitions

between different nodes, in a spatio-temporal network plays an important role in transportation systems. However, this is a very

challenging problem, affected by multiple complex factors, such as the spatial correlation between different locations, temporal

correlation among different time intervals, and external factors (like events and weather). In addition, the flow at a node (called node

flow) and transitions between nodes (edge flow) mutually influence each other. To address these issues, we propose a multitask

deep-learning framework that simultaneously predicts the node flow and edge flow throughout a spatio-temporal network. Based on

fully convolutional networks, our approach designs two sophisticated models for predicting node flow and edge flow, respectively.

These two models are connected by coupling their latent representations of middle layers, and trained together. The external factor is

also integrated into the framework through a gating fusion mechanism. In the edge flow prediction model, we employ an embedding

component to deal with the sparse transitions between nodes. We evaluate our method based on the taxicab data in Beijing and

New York City. Experimental results show the advantages of our method beyond 11 baselines, such as ConvLSTM, CNN, and

Markov Random Field.

Index Terms—Deep learning, spatio-temporal data, urban computing

Ç

1 INTRODUCTION

SPATIO-TEMPORAL networks (ST-networks), like transpor-
tation networks and sensor networks, are widely avail-

able in the real world, with each node incorporating a
spatial coordinate and each edge being associated with
dynamic properties. Flows in such ST-networks have two
representations (see Fig. 1): 1) node flow, i.e., the in—and
out-flows at a node, and 2) edge flow, namely, the transi-
tions between nodes. In a transportation system, these two
types of flows can be measured by �1 the number of cars
driven nearby roads, �2 the number of people traveling by
metro/bus, �3 the number of pedestrians, or �4 all of them
together if data is available. Fig. 1b presents an illustration.
Taking node r1 as an example, we can calculate the inflow
as 3, and outflow as 3 according to the mobile phone signals
and the GPS trajectories of vehicles, respectively. In detail,

we can see the transition from r3 to r1 is 3, and the transi-
tion from r1 to r2 and r4 are 2 and 1, respectively. There-
fore, we can get two levels of flows: node-level and edge-
level, as shown in Fig. 1c, of which the inflow and outflow
of four nodes (r1; r2; r3; r4) are ð3; 3; 0; 5Þ and ð3; 2; 5; 1Þ,
respectively, with transitions over all edges being viewed
as a directed graph.

Predicting these types of flows in a ST-network is of
great importance to public safety, traffic management and
network optimization [34]. Taking the crowd flow [33] as
an example, amounts of people streamed into a strip
region at the 2015 New Year’s Eve celebrations in Shang-
hai, resulting in a catastrophic stampede that killed 36
people. If one can predict the transitions between regions
and the crowd flow in each region, such tragedies can be
prevented or mitigated by utilizing emergency mecha-
nisms (e.g., sending out warnings, evacuating people, or
conducting traffic control).

However, simultaneously predicting in/out flows at all
nodes and transitions over edges of a ST-network is very
challenging because of the following aspects:

1) Scale and complexity: The in/out flow of a location
depend on that of its near neighbors as well as dis-
tant neighbors in geographical spaces, as people can
transit between any locations, particularly when
some events take place in a city. Given a big city
with a large number (N) of locations, there are N2

possibility of transitions, though these transitions
may not occur simultaneously at a time interval.
Thus, to predict the flow of location, either the in/
out flow or transition flow, we need to consider the
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dependence between the location and others
throughout a city. In addition, the prediction is also
concerned with the flow at past time intervals. More-
over, we cannot predict the flow of each location
individually and respectively, because locations in a
city are connected, correlated, and mutually influ-
ence each other. The complexity and scale have
posed huge challenges to traditional machine learn-
ing models like probabilistic graphical models.

2) Model multiple correlations and external factors: There
are three types of correlations we need to model
when dealing with such a prediction problem. The
first one is the spatial correlation between flows of
different locations, including the correlation between
near locations and that between distant locations.
The second one is the temporal correlation between
flows of a location at different time intervals, consist-
ing of the temporal closeness, periodic and trend
properties. Third, the in/out flows and transition
flow are highly correlated and mutually reinforced.
The sum of transitions streaming into a location is
the in-flow of the location. Likewise, an accurate pre-
diction of the total out-flow in a location can help
predict the transition flows from the location to other
places more accurately, vice versa. Additionally,
these flows are affected by external factors, such as
events, weather, and accidents. How to integrate
them into the predictive model is non-trivial.

3) Dynamics and sparsity: Because of the N2 possibility,
the flow of transitions between locations changes
over time much more tremendously than the in/out
flow. The transitions (between a location and the rest
of places) that will really occur at the next time inter-
val may be a very small portion of the N2 possibili-
ties (i.e., very sparse). Predicting such a sparse
transition in such a high dimensional space is a very
challenging task.

To tackle the aforementioned challenges, we propose a
Multitask Deep-Learning (MDL, see Fig. 4) framework to
predict the flows at nodes and on edges collectively and
simultaneously. The contributions of the research are three-
fold:

� The MDL devises a deep neural network for predict-
ing the flow at nodes (entitled NODENET) and that on
edges (entitled EDGENET) respectively. These two
deep neural networks are coupled through a concat-
enation of their latent layers, and trained together. In
addition, the correlation between these two types of

flows are modeled by a regularization in the loss
function. The deep learning-based model can handle
the complexity and scale problem in the prediction,
while the multitask framework mutually reinforces
the prediction of each type of flows.

� Both NODENET and EDGENET are three-stream fully
convolutional networks (3S-FCNs), where closeness-
stream, period-stream, and trend-stream capture
three different temporal correlations. Each stream
FCN also captures spatial correlations between both
near and distant locations. A gating component is
employed to fuse the external factors with the spa-
tio-temporal correlations. To deal with the transition
sparsity problem, in the EDGENET we design an
embedding component, which encodes the sparse
(and high dimensional) input with a latent and low-
dimensional representation.

� We evaluated our approach using the taxicab data in
Beijing and the New York City. The results demon-
strate advantages of our MDL beyond 11 baselines,
such as CNN/RNN/LSTM and Markov Random
Field, and the improvement beyond individual
predictions.

Table 1 lists the mathematical notation used in this paper.

2 PROBLEM FORMULATION

Definition 1 (Node). A spatial map is divided into I � J
grids based on the longitude and latitude, denoted by
V ¼ fr1; r2; . . . ; rI�Jg, each of which represents a spatial node,
as shown in Fig. 2a.

Let ðt; x; yÞ be a temporal geospatial coordinate, of which t

denotes timestamp, and ðx; yÞ denotes geospatial point. The
movement of an object can be recorded as a time-ordered
spatial trajectory, among which the start point and end
point (i.e., start-end pair), denoted by s ¼ ðts; xs; ysÞ and
e ¼ ðte; xe; yeÞ, represent the source and destination, respec-
tively. Let P be all start-end (i.e., ðs; eÞ) pairs.

Definition 2 (In/out flows). Given a set of start-end pairs P. Let
T ¼ ft1; . . . ; tTg be a sequence of time intervals. For a node rij
that lies at the ith row and the jth column of the map, the outflow
and inflow during the interval t are defined respectively as

Fig. 1. Flows in a simple spatio-temporal network.

TABLE 1
Description of Notation

Symbol Description

V ¼ frijg spatial node set, 1 � i � I, 1 � j � J
N number of nodes, i.e., I � J
T available time interval set
X t 2 R2�I�J tensor of inflow/outflow at nodes at

time t
St 2 RN�N matrix of transition over edges at time t
Mt 2 R2N�I�J tensor of transition converted from St

Et 2 Rle external features at time t
X tð:; i; jÞ;Mtð:; i; jÞ vector of node rij
X tðc; :; :Þ;Mtðc; :; :Þ matrix of cth channel
Xdep

t dependent set of X t

Mdep
t dependent set ofMt

2 # channels of node flow X t

2N # channels of edge flowMt
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X tð0; i; jÞ ¼ jfðs; eÞ 2 P : ðxs; ysÞ 2 rij ^ ts 2 tgj (1)

X tð1; i; jÞ ¼ jfðs; eÞ 2 P : ðxe; yeÞ 2 rij ^ te 2 tgj; (2)

where X tð0; :; :Þ and X tð1; :; :Þ mean outflow and inflow matri-
ces, respectively. ðx; yÞ 2 rij means the point ðx; yÞ lies within
the node rij, and te 2 t means the timestamp te is in the time
interval t. The inflow and outflow matrices at a certain time
are shown in Fig. 2.

Considering two types of flows (i.e., inflow and outflow), a
time-varying spatial map is conventionally represented as a
time-ordered sequence of tensors, with each tensor corre-
sponding to a snapshot of the map during a certain time
interval. In detail, each tensor consists of two matrices:
inflow matrix and outflow matrix, as shown in Fig. 2.

Let V denote the set of all nodes in a ST-network
under study, and N , jV j ¼ I � J be the number of nodes.
A temporal graph consisting of T discrete non-overlapping
time intervals is represented by the time-ordered sequence
of directed graphs Gt1 ; . . . ; GtT . A particular graph Gt ¼
ðV;EtÞ captures the topological state of the spatio-temporal
system during the tth time interval. For each graph Gt

(where t ¼ t1; . . . ; tT ), there exists a counterpart weight

matrix St 2 RN�N that represents the weighted directed
edges between nodes during the tth time interval. In our
study, the weight of the edge from node rs to node re at
time t is a non-negative scalar representing the transition
from rs to re in the corresponding time interval. In a case
where there is no connection between two nodes at time t,
the corresponding element in St should be 0.

Definition 3 (Transition). Given a set of start-end pairs P. Let
T ¼ ft1; . . . ; tTg be a sequence of time intervals. Let St be the
transition matrix during the interval t. The transition from
node rs to re, denoted Stðrs; reÞ, is defined as

Stðrs; reÞ ¼ jfðs; eÞ 2 P : ðxs; ysÞ 2 rs^
ðxe; yeÞ 2 re ^ ts 2 t ^ te 2 tgj;

(3)

where rs; re 2 V are the start and end nodes, respectively.
ðx; yÞ 2 r means the point ðx; yÞ lies within the grid r. ts 2 t
and te 2 t mean that the timestamp ts and te are both in the
time interval t. Here we consider the transitions that only hap-
pen at a certain time interval. Therefore, for a real-world appli-
cation, we can predict a real transition whose start and end
points are both in future.

2.1 Converting Time-Varying Graphs into Tensors

To apply deep neural networks to time-varying graphs, we
propose converting each graph at time t into a tensor first.
Given a directed graph Gt ¼ ðV;EtÞ at time t, we unroll it

first, then compute the directed weight matrix (e.g., transi-
tion matrix St), and finally get a tensorMt 2 R2N�I�J . Fig. 3
presents an illustration. (a) Given a graph consisting of
4 nodes and 6 edges at time t. (b) We first unroll it that is a
directed graph. (c) For each node, there are incoming
and outgoing transitions, represented by a vector (dimen-
sion ¼ 8). Taking Node r1 for example, its outgoing and
incoming transition vectors are respectively ½0; 2; 0; 1� and
½0; 0; 3; 0�, which are further concatenated into one vector
½0; 2; 0; 1; 0; 0; 3; 0�, containing both outgoing and incoming
information. (d) Finally, we can reshape the matrix into a
tensor, among which each node has a fixed spatial position
according to the original map segmentation, protecting the
spatial correlations.

2.2 Flow Prediction Problem

Flow prediction, generally speaking, is a time series prob-
lem, which aims to predict the citywide flows in each region
at time interval T+1 given the historical observations until
time T. But the flows in our paper contain two perspectives,
which are inflow,outflow in regions and transition flows
between regions, as defined above. Our goal in this paper is
to predict all these flows at the same time. In addition, we
also integrate some external factors such as holidays infor-
mation, weather conditions, temperature and so on. These
external features can be collected and provide some extra
useful information. The related notations are listed in
Table 1.

Problem 1. We here define the goal of our paper. Given the his-
torical flow observations fX t;Mtjt ¼ t1; . . . ; tTg and external
features ET , we propose a model to collectively predict X tTþ1
andMtTþ1 in the future.

3 MULTITASK DEEP LEARNING

Fig. 4 presents our MDL framework, consisting of three
components, which are used for data converting, node flow
modeling, and edge flow modeling, respectively. As illus-
trated in the left part of Fig. 4, we first convert the trajectory
(or trip) data over a map along time into two types of
flows: i) node flow that is a time-ordered sequence of
tensors fX tjt ¼ t1; . . . ; tTg (Step (1a)); ii) edge flow that is
a time-ordered sequence of graphs (transition matrices)
fStjt ¼ t1; . . . ; tTg (Step (2a)), which is further converted
into a sequence of tensors fMtjt ¼ t1; . . . ; tTg (Step (2b))
according to the method introduced in Section 2.1. These
two types of video-like data are then fed into NODENET and
EDGENET, respectively. Taking NODENET as an example, it
selects three different types of fragments, and feed them
into a 3S-FCN, which can model the temporal correlations,
including closeness, period, and trend. Among them, each
steam FCN can capture spatial near and distant correlations

Fig. 2. Spatial nodes (regions) and flow matrices.
Fig. 3. Converting a time-varying graph into a tensor.
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via multiple convolutions. The latent representations of
middle layers of NODENET and EDGENET are coupled by a
BRIDGE component, and trained together. We employ a
embedding layer (called Em) to handle transition sparsity
problem. A gating fusion component is used to integrate the
external factors. In addition, the correlation between the
node flow and edge flow are modeled by a regularization
between X̂ t and M̂t.

3.1 EDGENET

According to the aformentioned converting method, the
transition graph at each time interval can be converted into
a tensor Mt 2 R2N�I�J . For each node rij, it has up to 2N
transition possibility, including N incomings and N outgo-
ings. However, for a certain time interval, the transition
between nodes may be very sparse. Inspired by the embed-
ding method of natural language processing [23], we pro-
pose employing a spatial embedding method, to tackle such
sparse and high-dimensional (2N , depending on the num-
ber of nodes in the ST-network) problem. In detail, the spa-
tial embedding tends to learn a function that maps a
2N-dimension vector of node rij into a k-dimension space
as follows:

Ztð:; i; jÞ ¼WmMtð:; i; jÞ þ bm; 1 � i � I; 1 � j � J; (4)

where Wm 2 Rk�2N and bm 2 Rk are the learnable parame-
ter matrix and vector, respectively. All I � J nodes share
these parameters.Mtð:; i; jÞ 2 R2N means the vector located
at ði; jÞ.

The flows, like the traffic of crowds in a city [33], are
always affected by spatio-temporal dependencies. To cap-
ture different temporal dependencies (closeness, period,
and trend), Zhang et al. proposed a deep spatio-temporal
residual network that selects different key frames along the
time. Inspired by this, we here selects recent, near, and dis-
tant key frames to predict the time interval t, respectively
denotedMdep

t ¼ fMclose
t ;Mperiod

t ;Mtrend
t g, as follows:

� Closeness dependents:
Mclose

t ¼ fZt�lc ; . . . ;Zt�1g.
� Period dependents:

Mperiod
t ¼ fZt�lp�p;Zt�ðlp�1Þ�p; . . .Zt�pg.

� Trend dependents:
Mtrend

t ¼ fZt�lq �q;Zt�ðlq�1Þ�q; . . .Zt�qg.
where p and q are the period and trend span, respec-

tively. lc, lp, and lq are the lengths of these three parts of
sequences.

The output (i.e., the prediction at next time interval) has
the same resolution as the inputs. Such task is very similar
to the well-known image segmentation problem, which can
be handled by a fully convolutional network (FCN) [22].
Inspired by this, we here propose a three-stream FCN (3S-
FCN, see Fig. 4) to capture temporal closeness, period, and
trend dependencies. Among that, each stream is a FCN,
consisting many convolutions (see Fig. 5). According to the
property of convolution, one convolutional layer can cap-
ture spatial near dependencies. As the number of convolu-
tional layers increases, FCN can capture farther and farther
dependencies, even citywide spatial dependencies. How-
ever, such deep convolution network become very hard to
train. Therefore, we employ residual connections [12] to
help the training. Similar to the residual block used in
the residual network [13], we use a block that consists of
Batch Normalization (BN, [16]), Rectified Linear Unit (ReLU,
[19]), and Convolution (Conv). Let the outputs of closeness-,
period-, and trend-stream FCNs be Mc;Mp;Mq, res-
pectively. Different nodes may have different properties
of closeness, period, and trend. To address this issue,

Fig. 5. FCN with residual connections.

Fig. 4. MDL framework. Em: Embedding; Conv: Convolution; FCN: Fully convolutional network.
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we propose using a parametric-matrix-based fusion [33]
(PM fusion in Fig. 4), to merge them

Mfcn ¼Wc 	Mc þWp 	Mp þWq 	Mq; (5)

where 	 is the Hadamard product (i.e., element-wise multi-
plication), Wc;Wp;Wq are the learnable parameters that
adjust the degrees affected by temporal closeness, period and
trend, respectively.

3.2 NODENET and BRIDGE

Similar to EDGENET, NODENET is also a 3S-FCN, we select
recent, near, and distant key frames as the closeness, period,
and trend dependents. The difference is that NODENET does-
not have the embedding layer because the number of chan-
nels of inputs is only 2. These three different sets of
dependents are fed into three different stream FCNs, whose
outputs are further merged by a PM fusion component (see
Fig. 4), too. Then, we can get the output of 3S-FCN, denoted
X fcn 2 RCx�I�J .

Considering that node flow is correlated with edge flow,
so the representations learned from NODENET and EDGENET

should be connected. To connect NODENET and EDGENET,
assuming two latent representations of NODENET and EDGE-

NET are X fcn and Mfcn respectively. We here propose two
fusion methods.

SUM Fusion. The sum fusion method directly sum up
these two representations, the output map at the same spa-
tial node rij across channel c is as follows:

Hðc; :; :Þ ¼ Xfcnðc; :; :Þ þMfcnðc; :; :Þ; c ¼ 0; . . . ; C � 1; (6)

where C is the number of channels of Xfcn andMfcn, and
H 2 RC�I�J . It’s obvious that this fusion method is sub-
jected to the fact that both representations of two tasks
should have a same shape, i.e., X fcn andMfcn have a same
size at channel dimension.

CONCAT Fusion. In order to be free from the restraint. We
propose an another fusion method called CONCAT.Formally,
the concatenation of two latent representation maps X fcn

andMfcn at the same spatial node rij across channel c as fol-
lows:

Hðc; :; :Þ ¼ X fcnðc; :; :Þ; c ¼ 0; . . . ; Cx � 1 (7)

HðCx þ c; :; :Þ ¼ Mfcnðc; :; :Þ; c ¼ 0; . . . ; Cm � 1; (8)

where Cx and Cm are the numbers of channels of X fcn and
Mfcn, respectively, and H 2 RðCxþCmÞ�I�J . CONCAT fusion
actually can better integrates two levels of node and edge
flows by mutually reinforcing. We also discuss another
fusion method as BRIDGE (see Section 4.3).

After CONCAT fusion, we append a convolutional layer
into NODENET and EDGENET, respectively. The convolution
is used to map combined latent feature maps H into
different-size-channel outputs, i.e., X res 2 R2�I�J and
Mres 2 R2N�I�J , see Fig. 6.

3.3 Fusing External Factors Using a Gating
Mechanism

External factors, such as events and weather, that can affect
the flows in the different parts of a ST-network. For exam-
ple, an accident may block the traffic of a certain area
locally, and a rainstorm may reduce the citywide flows

globally. Such an external factor just like a switch, the flows
would be tremendously changed if it happen. Based on this
insight, we here develop a gating-mechanism-based fusion, as
shown in Fig. 6. At time t, one can obtain the corresponding
external features in the ST-network, denoted Et 2 Rle�I�J , of
which Etð:; i; jÞ 2 Rle represents the feature vector of a par-
ticular node. Formally, we can obtain the following gating
values for EDGENET as follows:

Fmði; jÞ ¼ s Weð:; i; jÞ � Etð:; i; jÞ þ beði; jÞð Þ;
1 � i � I; 1 � j � J;

(9)

where We 2 Rle�I�J and be 2 RI�J are learnable parame-
ters. Fm 2 RI�J is the output of GATING, of which Fmði; jÞ is
the gating value of the corresponding node rij in the ST-
network. sð�Þ is the sigmoid function, “�” is the dot product
(inner product) of two vectors.

Then we employ a PRODUCT fusion based on the gating
mechanism as follows:

M̂tðc; :; :Þ ¼ tanhðFm 	MResðc; :; :ÞÞ; c ¼ 0; . . . ; 2N � 1; (10)

where tanh is a hyperbolic tangent that ensures the output
values are between �1 and 1.

Similarly, the final prediction of NODENET at time t is

X̂tðc; :; :Þ ¼ tanhðFx 	 XResðc; :; :ÞÞ; c ¼ 0; 1; (11)

where Fx 2 RI�J is another output of GATING. One reason of
using different GATING values (i.e., F) for node and edge
flows is that the external factors can affect the in/out flows
and transitions of different locations differently.

3.4 Losses

Let f be all the learnable parameters in EDGENET, we intend
to learn them by minimizing the following objective func-
tion between predicted transitions M̂ and true transitionsM

argmin
f
J edge ¼

X
t2T

X2N�1
c¼0

Qc
t 	 M̂tðc; :; :Þ �Mtðc; :; :Þ

� ��� ��2
F
;

(12)

where Qc
t is an indication matrix for all the non-zero entries

inMtðc; :; :Þ, i.e., Qc
tði; jÞ ¼ 1 if and only ifMtðc; i; jÞ > 0. T

is a set of available time intervals. k � kF is the Frobenius
Norm of a matrix.

Fig. 6. MDL using CONCAT fusion.
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Similarly, let u be all the learnable parameters in
NODENET. For the square loss it yields the following optimi-
zation problem

argmin
u
J node ¼

X
t2T

X1
c¼0
kPc

t 	 X̂ tðc; :; :Þ � X tðc; :; :Þ
� �

k2F ;

(13)

where Pc
t is an indication matrix for all the non-zero entries

in X tðc; :; :Þ, i.e., Pc
t ði; jÞ ¼ 1 if and only if X tðc; i; jÞ > 0.

We know that the sum of transitions streaming into node
rij is the inflow of the node, and the sum of transitions
streaming out is the outflow. From Definition 2, X̂ tð0; :; :Þ
and X̂ tð1; :; :Þ are outflow and inflow matrices, respectively.
According to the transition tensor constructed method
introduced in Section 2.1, we know that the first N channels
represent outgoing transitions, and the last N channels rep-
resent incoming transitions. Therefore, it yields the follow-
ing loss function:

argmin
u;f

X
t2T

X
i

X
j

kX̂ tð0; i; jÞ �
XN�1
c¼0

M̂tðc; i; jÞk2
 

þ kX̂ tð1; i; jÞ �
X2N�1
c¼N

M̂tðc; i; jÞk2
!
:

(14)

Or, equivalently, it can be written as

argmin
u;f

Jmdl ¼
X
t2T

k X̂ tð0; :; :Þ|fflfflfflfflffl{zfflfflfflfflffl}
outflow

�
XN�1
c¼0

M̂tðc; :; :Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
outgoing transitions

k2F

0
BBBB@

þ k X̂ tð1; :; :Þ|fflfflfflfflffl{zfflfflfflfflffl}
inflow

�
X2N�1
c¼N

M̂tðc; :; :Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
incoming transitions

k2F

1
CCCCA:

(15)

Finally, we obtain the combined loss as follows:

argmin
u;f

�nodeJ node þ �edgeJ edge þ �mdlJmdl; (16)

where �node, �edge, and �mdl are adjustable hyper-parameters.

3.4.1 Optimization Algorithm

Algorithm 1 outlines the MDL training process. We first
construct training instances from the original sequence of
observations (lines 1-4). During each iteration, we optimize
the objective (16) on the selected batch of training instances
Dbatch (lines 7-8).

Algorithm 1. Training of MDL Algorithm

Input:Historical observations: fX t;Mtjt ¼ t1; . . . ; tTg;
external features: fEt1 ; . . . ; EtT g;
lengths of closeness, period, trend sequences: lc, lp; lq;
period: p; trend span: q.

Output:MDLmodel.
// construct training instances

1 Dtrain �;
2 for t 2 T do // T is available time available set

3 put an training instance ðfXdep
t ;Mdep

t ; Etg;X tÞ into
Dtrain

4 end
// train the model

5 initialize the parameters u;f
6 repeat
7 randomly select a batch of instances Dbatch from Dtrain

8 find u;f by minimizing the objective (16) with Dbatch

9 until stopping criteria is met
10 output the learned MDL model

4 EXPERIMENTS

We consider two kinds of datasets: TaxiBJ and TaxiNYC, see
Table 2. To evaluate the prediction performance, we con-
sider the Root Mean Square Error (RMSE) and Mean Abso-
lute Error (MAE).

4.1 Settings

4.1.1 Datasets

We use two different sets of data as shown in Table 3. Each
dataset contains two sub-datasets: trajectories/trips, and
external factors, detailed as follows.

� TaxiBJ: Trajectory data is the taxicab GPS data and
meteorology data in Beijing from four time intervals:
1st Jul. 2013 - 30th Oct. 2013, 1st Mar. 2014 - 30th Jun.
2014, 1st Mar. 2015 - 30th Jun. 2015, 1st Nov. 2015 -
10th Apr. 2016. We choose data from the last four
weeks as the test set, and all data before that as the
training set.

� TaxiNYC: Taxi trip records are taken from the NYC
from 2011 to 2014. Trip data includes: pick-up and
drop-off dates/times, pick-up and drop-off loca-
tions. Among the data, the last four weeks are chosen
as the test set, and the others as the training set.

4.1.2 Baselines

Table 4 lists the baselines compared

� HA: Historical Average model that uses the average
of historical values in corresponding periods.

� ARIMA: Auto-Regressive Integrated Moving Aver-
age model.

� SARIMA: Seasonal ARIMAmodel.
� VAR: Vector Auto-Regressive that can capture the

pairwise relationships among all flows.
� RNN: Recurrent Neural Network [10]. We selected

previous L frames to predict the next frame. Hyper-
parameters: L is set as one of f3; 6; 12g, the hidden

TABLE 2
Data Statistics

Dataset TaxiBJ TaxiNYC

# time intervals 35064 11472
Shape of X t 16� 16 16� 16
Shape ofMt 512� 16� 16 512� 16� 16

ZHANG ET AL.: FLOW PREDICTION IN SPATIO-TEMPORAL NETWORKS BASED ON MULTITASK DEEP LEARNING 473



units is set as one of f32; 64g, learning rate set as one
of f0:1; 0:01; 0:001; 0:0001g,.

� LSTM: Long-Short-Term-Memory network [15]. The
setting is same to RNN.

� GRU: Gated-Recurrent-Unit network [6]. The setting
is same as RNN.

� ST-ANN: Spatio-Temporal Artificial Neural Net-
work, which takes spatial (nearby 8 regions) and
temporal (8 previous time intervals) values as input
features.

� ConvLSTM: Convolutional LSTM [29], a state-of-the-
art model for precipitation nowcasting using the
radar echo dataset (image sequence). The crowd flow
data used in this paper can be viewed as a sequence
of images, each of which is crowd flows at a time
interval. Previous 3 frames are used to predict
the next frame. Themodel consists of two ConvLSTM
layers and a convolutional layer, in which the kernel
size is ð3; 3Þ and the filter number is 32. Other hyper-
parameters are same to RNN.

� ST-ResNet: Spatio-Temporal Residual Convolutional
Network [33], showing state-of-the-art performance
on node flow prediction.

� MRF: Markov-Random-Field-based citywide flow
prediction model [14], that leverages flows in all
individual regions and transitions between regions
as well as external factors (e.g., weather).

For both datasets, we select last four weeks (i.e., 672 time
intervals) as the test set, and the others as the training set.
MDL is implemented using TensorFlow [2] and Keras [7],
and trained via backpropagation and the Adam [18]
optimization.

4.1.3 Preprocessing

In the output of the MDL, we use tanh as our final activa-
tion, whose range is between �1 and 1. Here, we use the
Min-Max normalization method to scale the data into the
range ½�1; 1�. In the evaluation, we re-scale the predicted

value back to the normal values, compared with the ground
truth. For external factors, we use one-hot encoding to trans-
form metadata (i.e., DayOfWeek, Weekend/Weekday), hol-
idays and weather conditions into binary vectors, and use
Min-Max normalization to scale the Temperature and Wind
speed into the range ½0; 1�.

4.1.4 Hyperparameters

We here introduce the hyperparameter settings of our MDL.
By default, we set �node ¼ 1 and �edge ¼ 1, which means two
tasks are equally important, and �mdl as 0.0005. p and q are
empirically fixed to one-day and one-week, respectively.
For lengths of the three dependent sequences, we set them
as: lc 2 f1; 2; 3g; lp 2 f1; 2; 3g; lq 2 f1; 2; 3g. We set the num-
ber of convolutions of FCN as 5 by default. We select
90 percent of the training data for training each model, and
the remaining 10 percent is chosen as the validation set,
which is used to early-stop our training algorithm for each
model based on the best validation score. Afterwards, we
continue to train the model on the full training data for a
fixed number of epochs (e.g., 10 epochs). Network parame-
ters are trained from a random start,1 using the Adam [18]
optimization to perform all weight updated with a fixed
learning rate. The batch size is 32. The learning rate is set as
one of f0:01; 0:005; 0:001; 0:0005; 0:0001; 0:00005g.

4.1.5 Evaluation Metrics

We measure the accuracy of our methods and baselines by
Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE)2 for both node-level (i.e., inflow/outflow) and edge-
level (i.e., transition) prediction as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i

ðyi � ŷiÞ2
s

; MAE ¼ 1

n

X
i

jyi � ŷij;

where y and ŷ are the available ground truth and the corre-
sponding predicted value, respectively; n is the number of
all available ground truths.

TABLE 3
Datasets (Holidays Include Adjacent Weekends)

Dataset TaxiBJ TaxiNYC

Data type Taxi GPS Taxi Trip
Location Beijing New York

Time Span

7/1/2013 - 10/30/2013
3/1/2014 - 6/30/2014 1/1/2011 -
3/1/2015 - 6/30/2015 12/30/2014
11/1/2015 - 4/10/2016

Time interval 1 hour 1 hour
Gird map size (16, 16) (16, 16)

Trajectory data

Average sampling rate (s) 
 60 n
# taxis 34,000+ n
# available time interval 11,472 35,064

External factors (holidays and meteorology)

# holidays 106 451
Weather conditions 16 types (e.g., Sunny, Rainy) n
Temperature / �C ½�24:6; 41:0� n
Wind speed / mph ½0; 48:6� n

TABLE 4
Baselines

Model Temporal Spatial External Transition

HA @
ARIMA @
SARIMA @
VAR @
RNN @
LSTM @
GRU @
ST-ANN @ @
ConvLSTM @ @
ST-ResNet @ @ @
MRF @ @ @ @
MDL [ours] @ @ @ @

1. The learnable parameters are initialized using a uniform
distribution with the default parameter in Keras [7].

2. The smaller the better for RMSE and MAE.
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4.2 Results

Node Flow Prediction. We first compare various methods on
the task of predicting in/out flows in the test test, given
observed trained data. Table 5 shows the RMSE and MAE
of node flow prediction on TaxiBJ and TaxiNYC. We can
observe that, MDL and MRF consistently outperform all
other baselines. In detail, our MDL performs apparently bet-
ter than MRF on TaxiNYC. On the dataset TaxiBJ, MDL has
a competitive result against MRF. The reason may be that
TaxiNYC is 3 times bigger (T in Table 2) than TaxiBJ. In
other words, our MDL has better performance on larger
data than MRF. We also notice that it is time-consuming to
train MRF, which takes about one week to finish the whole
training process on TaxiBJ using the code provided in [14].
In detail, taking the inflow prediction of TaxiNYC as an
example, the results of RMSE demonstrate that MDL is rela-
tively 87 percent better than HA, 50 percent better than
ARIMA, 44 percent better than SARIMA, 48 percent better
than VAR, 26 percent better than ST-ANN, 54 percent better
than RNN, 22 percent better than ST-ResNet, and 19 percent
better than ConvLSTM.

Results of Edge Flow Prediction. We next compare the
methods on the task of forecasting transitions. Table 6
presents the RMSE and MAE of edge flow prediction on
TaxiBJ and TaxiNYC. The experiments on the transition pre-
diction task is very time-consuming. We mainly run the
experiments on MDL and HA, ARIMA, SARIMA, ST-ANN,
and ST-ResNet, demonstrating that MDL outperforms
others. The results show that our MDL significantly outper-
forms 5 baselines.

4.3 Evaluation on Fusing Mechanisms

In this section, we present the empirical experiments on dif-
ferent fusing mechanisms. To couple NODENET and EDGE-

NET, we introduce the CONCAT fusion in Section 3.2. A
straight-forward fusion method is to use the SUM fusion by
H ¼ X fcn þMfcn. Note that SUM requires two latent feature
maps have the same shape. For fusing external factors, one
can choose one of the following ways: the GATED fusion
introduced in Section 3.3, SIMPLE fusion (the sum fusion in
[33]), or not use (i.e., w/o). Therefore, there are a total

of 6 variants of MDL, as shown in Table 7. The same hyper-
parameter setting (e.g., number of training iterations) is
used for all variants. We can observe that the CONCAT +
GATING method outperforms other methods based on RMSE
and MAE. In detail, Fig. 7 shows the converge curve of
different fusion methods on the dataset TaxiNYC. Taking
Fig. 7(a) as an example, we fix all components and hyper-
parameters except Bridge.

4.4 Evaluation on Model Hyper-Parameters

4.4.1 Effect of Training Data Size

To demonstrate the effectiveness of training data size
for deep learning model, here we select 3-month, 6-month,
1-year and 3-year data from TaxiNYC. Experiments are run
on the same MDL model with lc ¼ 3; lp ¼ 1; lq ¼ 1. Fig. 8

TABLE 5
Comparisons with Baselines on TaxiBJ and TaxiNYC in Node Flow Prediction

Model RMSE MAE

TaxiBJ TaxiNYC TaxiBJ TaxiNYC

inflow outflow inflow outflow inflow outflow inflow outflow

HA 21.23 22.49 417.49 401.33 13.49 13.98 85.51 86.68
ARIMA 10.83 11.41 108.83 100.42 7.03 7.28 25.14 26.46
SARIMA 11.00 11.14 96.07 85.95 6.98 7.12 21.70 23.09
VAR 10.05 10.38 104.29 93.84 6.74 6.86 24.19 22.53
RNN 8.68 8.48 118.61 108.06 5.39 5.24 29.37 30.24
LSTM 9.39 9.06 121.01 110.16 5.64 5.44 28.28 29.12
GRU 9.37 9.30 124.12 106.89 5.66 5.55 28.95 27.51
ST-ANN 8.71 8.59 73.50 68.20 5.46 5.45 19.69 20.26
ConvLSTM 8.95 8.55 66.57 55.70 5.73 5.47 18.56 19.91
ST-ResNet 8.21 7.89 69.00 55.50 5.18 5.15 19.28 18.28
MRF 7.35 7.08 87.86 76.98 4.57 4.50 18.30 18.35
MDL [ours] 7.71 7.15 53.68 47.44 4.95 4.75 13.98 14.63

TABLE 6
Transition Prediction Results

Model TaxiBJ TaxiNYC

HA 1.05/ 0.68 45.03/ 10.14
ARIMA 0.98/ 0.69 16.06/ 4.89
SARIMA 1.26/ 0.77 16.21/ 5.06
ST-ANN 0.92/ 0.63 12.87/ 4.18
ST-ResNet 0.72/ 0.37 14.75/ 4.82
MDL [ours] 0.65/ 0.32 9.89 / 3.48

RMSE/ MAE for each method.

TABLE 7
RMSE and MAE on the TaxiNYC Test Set Using

MDL with Different Types of Fusions

Fusing type RMSE/ MAE

Bridge External inflow outflow transition

CONCAT GATING 53.68/ 13.98 47.44/ 14.63 9.89/ 3.48
CONCAT SIMPLE 55.68/ 14.48 49.03/ 15.00 10.12/ 3.55
CONCAT w/o 55.70/ 14.64 47.81/ 14.82 10.10/ 3.57
SUM GATING 55.77/ 14.24 48.32/ 14.88 10.10/ 3.54
SUM SIMPLE 55.81/ 14.50 49.53/ 15.17 10.29/ 3.62
SUM w/o 54.85/ 14.14 49.32/ 15.12 10.11/ 3.57
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presents the results. We can observe that more data always
has better results on both node flow and edge flow
prediction.

4.4.2 Effect of Network Depth

Fig. 9 presents the effect of network depth on TaxiNYC
(3-month data). As the network goes deeper (i.e., the num-
ber of convolutions increases), the RMSE of the model first
decreases, demonstrating that the deeper network often has
a better result because it can capture not only spatial near
dependencies but also distant ones. However, the RMSE
increases when the network becomes much deeper, show-
ing that the training process becomes much more difficult.

4.4.3 Effect of Multi-Task Component

Table 8 and Fig. 10 demonstrate the influence our multi-task
component on the final experiments performance.

From the table and figure, we can find that transition
flow prediction task can be improved in most cases, and
when the �node = �edge = 1 and �mdl =0.1, our multi-task
model achieves best performance against others, under this
circumstance, both tasks get better results compared with

two single tasks, which proves the effectiveness and reliabil-
ity of the fact that our multi-task part can mutually promote
the performance of each task.

4.5 Flow Predictions

Fig. 11 depicts two nodes’ predictive results of our MDL
over the next one hour against the ground truth in New
York City (NYC) in the last 4 weeks of 2014. In detail, Node
ð10; 1Þ always have higher flow than Node ð8; 3Þ. We can
observe that our model is very accurate in tracing the
ground truth curves (including sudden changes) of traffic
flow on both nodes in NYC, which demonstrates the effec-
tiveness of our proposed model.

5 RELATED WORK

5.1 Spatio-Temporal Prediction

Many works are trying to find some patterns and correla-
tions from spatio-temporal datasets [17], [31], [32]. There
are some previously published works on predicting an
individual’s movement based on their location history [9],
[24], [27]. They mainly forecast millions, even billions, of
individuals’ mobility traces rather than the aggregated
crowd flows in a region. Such a task may require huge
computational resources, and it is not always necessary
for public safety situations. Some other researchers aim to
predict travel speed and traffic volume on the road [1],
[25]. Most of them are predicting single or multiple road
segments, rather than citywide ones [5], [30]. Recently,
researchers have started to focus on city-scale traffic flow
prediction [14], [21]. Both work are different from ours
where the proposed methods naturally focus on the indi-
vidual region not the city, and they do not partition the
city using a grid-based method which requires a more
complex method to find irregular regions first. Deng et al.

Fig. 7. Training curves on TaxiNYC of various fusions. The vertical axis corresponds to training and validation (valid) losses, and the horizontal axis
corresponds to the number of epochs.

Fig. 8. Effect of training data size.

Fig. 9. Effect of network depth.

TABLE 8
Single-Task versus Multi-Task

Hyper-Parameters RMSE / MAE

�node �edge �mdl inflow outflow transition

0 1 0 / / 10.53/3.63
1 0 0 56.66/14.60 51.30/15.34 /
1 1 0.1 53.68/13.98 47.44/14.63 9.89/3.48
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proposed a latent space model for predicting time-varying
traffic [8] on the fixed graph (i.e., road network), which is
different from ours.

5.2 Classical Models for Time Series Prediction

Forecasting flow in a spatio-temporal network can be
viewed as a time series prediction problem. Existing time-
series models, like the auto-regressive integrated moving
average model (ARIMA, [3]), seasonal ARIMA [26], and the
vector autoregressive model [4] can capture the temporal
dependencies very well, yet it fails to handle spatial
correlations.

5.3 Neural Networks for Sequence Prediction

Neural networks and deep learning [10] have gained
numerous success in the fields such as compute vision [19],
speech recognition [11], and natural language understand-
ing [20]. Recurrent neural networks (RNNs) have been used
successfully for sequence learning tasks [28]. The incorpo-
ration of long short-term memory (LSTM) [15] or gated
recurrent unit (GRU) [6] enables RNNs to learn long-term
temporal dependency. However, these neural network
models can only capture spatial or temporal dependencies.
Recently, researchers have combined the above networks
and proposed a convolutional LSTM network [29] that
learns spatial and temporal dependencies simultaneously.
Such a network cannot model very long-range temporal
dependencies (e.g., period and trend), and training becomes
more difficult as depth increases. Zhang et al. proposed a
spatio-temporal residual network [33], capable of capturing
spatio-temporal dependencies as well as external factors,
yet it may be not suited to deal with transitions over large
dynamic graphs.

6 CONCLUSIONS

We proposed a novel multitask deep learning (MDL) frame-
work for simultaneously predicting in/out flows (node flow)

and transitions (edge flow) in a spatio-temporal network.
MDL can not only handle the complexity and scale problem
in the prediction, but alsomutually reinforce the prediction of
each type of flow. In addition, MDL is capable of capturing
the spatial correlations (near and distant), temporal correla-
tions (closeness, period, trend), and external factors (like
events andweather).We evaluate ourMDLon two real-world
datasets in Beijing and NYC, achieving performances which
are significantly better than 11 baselinemethods.
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