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Abstract—As a critical task of the urban traffic services, fine-grained urban flow inference (FUFI) benefits in many fields including
intelligent transportation management, urban planning, public safety. FUFI is a technique that focuses on inferring fine-grained urban
flows depending solely on observed coarse-grained data. However, existing methods always require massive learnable parameters
and the complex network structures. To reduce these defects, we formulate a contrastive self-supervision method to predict
fine-grained urban flows taking into account all correlated spatial and temporal contrastive patterns. Through several well-designed
self-supervised tasks, uncomplicated networks have a strong ability to capture high-level representations from flow data. Then, a
fine-tuning network combining with three pre-training encoder networks is proposed. We conduct experiments to evaluate our model
and compare with other state-of-the-art methods by using two real-world datasets. All the empirical results not only show the
superiority of our model against other comparative models, but also demonstrate its effectiveness in the resource-limited environment.

Index Terms—Fine-grained urban flow inference, Contrastive self-supervision, spatio-temporal data

F

1 INTRODUCTION

1 W ITH the developing trend of urbanization, intelligent2

transportation system has become one of the crucial3

components in the realm of smart cities [1], [2]. A critical4

requirement from urban planners and administrators is to5

monitor fine-grained urban flows, along with warnings in6

case of traffic congestion, public risk, etc [2]–[5]. For ex-7

ample, streamed people caused a chaotic crowd stampede8

at the Falls Festival in Shanghai, leaved up to 36 people9

died and 80 people injured in a catastrophic stampede [6].10

Urban Managers can locate high-risk regions and prevent11

people from such real tragedies by utilizing emergency12

mechanisms based on the fine-grained crowd warning and13

prediction model. Furthermore, with the telecommunication14

construction from 4G to 5G, the distance between base sta-15

tions gradually decreases [7]. Fine-grained inference tasks,16

such as fine-grained urban flow prediction can provide a17

more accurate guidance to set 5G base stations from the18

human mobility aspect.19

However, forecasting fine-granularity urban flows sig-20

nify that large numbers of monitoring equipment (e.g.,21

mobile devices, surveillance cameras and piezoelectric sen-22

sors) have to be developed over the city [8]–[10]. Despite23

This work was supported in part by the Shandong Excellent Young Scientists
Fund (Oversea) under Grant 2022HWYQ-044, in part by the Natural Science
Foundation of Shandong Province under Grant ZR2021QF034, in part by the
Open Fund of Key Laboratory of Urban Land Resources Monitoring and Sim-
ulation, Ministry of Natural Resources, in part by the Shandong Provincial
Natural Science Foundation for Distinguished Young Scholars under Grant
ZR2021JQ26, in part by the Major Basic Research Project of Natural Science
Foundation of Shandong Province under Grant ZR2021ZD15, in part by
the Young Scholars Program of Shandong University and in part by the
Fundamental Research Funds of Shandong University.
Hao Qu, Yongshun Gong, Meng Chen and Yilong Yin are with
the School of Software, Shandong University, Jinan, China. (e-mail:
hao.qu@mail.sdu.edu.cn; {ysgong,mchen,ylyin}@sdu.edu.cn).
Junbo Zhang and Yu Zheng are with JD Intelligent Cities Research, China.
(e-mail: {msjunbozhang,msyuzheng}@outlook.com).
Hao Qu and Yongshun Gong contributed equally to this work.
∗Corresponding authors.

thousands of sensing devices bring convenience to the pub- 24

lic, they consume huge amounts of power resources. For 25

example, authorities get costly in operating ubiquitous mon- 26

itoring equipment in terms of the procurement, manpower 27

and maintenance fees, which increases the financial pressure 28

of the government [11], [12]. 29

To address such problems, fine-grained urban flow in- 30

ference (FUFI) is proposed recently, which focuses on es- 31

timating fine-grained flows depending solely on observed 32

coarse-grained data [3]–[5]. Figure 1 gives an example of 33

this process. Figure 1 (a) and (b) illustrate the same city area 34

but with two different division scales, the left sub-figure 35

is the coarse-granularity map (32 × 32) and the right one 36

represents the fine-granularity map (64 × 64). The goal of 37

FUFI is to make an accurate prediction for the fine-grained 38

flow map from the coarse flow data. Intuitively, FUFI is 39

also recognized as a variant of image super-resolution but 40

has its unique structural constraint, i.e., the sum of the flow 41

volumes in fine-grained regions strictly equals that of the 42

corresponding super-region. 43

Despite achievements in FUFI problem [3]–[5], most of 44

them require a complex neural network architecture, a huge 45

number of parameters, and a long-term training period. To 46

present, contrastive self-supervision is an effective method 47

to handle such issues, which has been well-performed in 48

the field of computer vision [13]–[16] and natural language 49

process [17], [18]. These models have shown a strong repre- 50

sentation learning ability in a large amount of unlabeled 51

data or fewer labeled data. To the best our knowledge, 52

existing contrastive self-supervised learning strategies can- 53

not be utilized in the FUFI problem directly. In reality, this 54

work faces several specific challenges when we formulate 55

the problem: 56

• Spatial Contrastive Self-supervision. Essentially, the 57

flows of a region are mainly affected by the surrounding 58

regions. However, two regions can have similar flows when 59
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Fig. 1: Traffic flow of two different granularities in Beijing,
where each grid denotes a region. Fine-grained urban flow
inference aims to infer from (a) Coarse-grained crowd flows
to (b) Fine-grained crowd flows

they fall into the same functional area (e.g., business center,60

residential area, and tourist area) [19], [20]. As shown in61

Figure 1 (a), even there is a long distance between regions62

A and B, they have a similar flow property. Previous FUFI63

studies focus mainly on neighboring correlations, while ig-64

noring semantic similarities. Moreover, existing contrastive65

self-supervision usually uses the entire flow maps to set66

a comparison pair, but neglects the comparisons at the67

regional level. Therefore, how to devise an effective spatial68

contrastive learning method is a principal challenge that69

needs to be resolved.70

• Temporal Contrastive Self-supervision. Existing FUFI71

methods aim to predict one fine-grained flow map from a72

snapshot of the coarse-grained flow map at the current mo-73

ment. This one-to-one approach does not make effective use74

of temporal information from the self-supervision perspec-75

tive. The prediction of fine-grained urban flow is not only76

inferred from the current timestamp but also affected by pre-77

vious conditions. Besides, the overall traffic flow changes in78

an area have strong periodic characteristics, which indicates79

that both sequential neighborhoods and semantic similarity80

points contribute to the flow inference. Failure to use of this81

information will lead to a poor performance.82

• External Factors. External factors also play a crucial83

role in FUFI [4], [5]. For example, during peak hours of84

commuting traffic, the traffic flow of arterial roads is greater85

than other time periods. When severe weather occurs, peo-86

ple tend to be indoors rather than outdoors. Various external87

factors have different effects on the real-world fine-grained88

flow inference.89

To address all challenges well, we propose a spatio-90

temporal contrastive self-supervision method for the FUFI,91

named as UrbanSTC. UrbanSTC contains three self-92

supervised pretext tasks: regional contrast, spatial super-93

resolution inference and temporal contrast. Regional con-94

trast focuses on exploring similarities among regional-level95

flows based on the intrinsic spatial characteristics. Spa-96

tial super-resolution inference is an inference network that97

learns the spatial and upscaling patterns in the super-98

resolution process. Given the triplet sets of flow maps, the99

temporal contrast task bridges the distances between all100

positive pairs, while requires all negative pairs far away101

from each other. Finally, a fine-tuning network combining102

with three pre-training encoder networks is devised to make103

the fine-grained flow prediction. Differing from UrbanFM104

[3] and FODE [4], the proposed UrbanSTC achieves a sig- 105

nificant performance improvement with a light architecture. 106

The main contributions and innovations of this paper are 107

summarized as follows: 108

• We propose a general framework of spatio-temporal 109

contrastive self-supervision for the FUFI problem. We de- 110

sign two pretext tasks from the spatial aspect, i.e., the 111

regional contrast and the spatial super-resolution inference. 112

These two pretext tasks can identify the spatial underlying 113

relationships among regions in terms of the surrounding 114

property and semantic similarity. 115

• Two kinds of temporal contrast sampling methods, 116

hard sampling and weight sampling, are proposed in this 117

paper. The former method selects the most confident ex- 118

amples as the positive and negative pairs, and the latter 119

leverages an adaptive weight strategy to rebuild positive 120

and negative pairs of the anchor example. 121

• We incorporate external factors in the fine-tuning 122

UrbanSTC network. Experimental results prove that the 123

external influences benefit the final results because they 124

have drawn useful information from events and weather 125

conditions. 126

• We perform a collection of experiments on two types 127

of dense and sparse real-world datasets to prove the effec- 128

tiveness of our method compared with other state-of-the- 129

art models. All evaluation results show that the proposed 130

method UrbanSTC yields the best performance. Specifically, 131

when the training data reduces, our model shows an outper- 132

formed prediction performance, which demonstrates that 133

UrbanSTC has its own advantages in the absence of training 134

data resources. 135

The rest of this paper is organized as follows: Section 136

2 includes a literature review. Section 3 formally defines 137

our problem. The proposed method is shown in Section 138

4. All experimental results are shown in Section 5. Finally, 139

conclusions are drawn in Section 6. 140

2 RELATED WORK 141

In this section, we first review the current studies on 142

the fine-grained urban flow inference (FUFI) and self- 143

supervised learning methods. Since the FUFI problem [3] 144

can be treated as a variant of single image super-resolution 145

(SISR), we then introduce the SISR problem and reveal the 146

difference between them. 147

2.1 Fine-grained Urban Flow Inference 148

FUFI aims at inferring fine-grained crowed flows in a city 149

based on the coarse-grained observations, which is a variant 150

of SISR in the traffic prediction field [21], [22]. Liang et 151

al. [3] first propose a neural network named UrbanFM to 152

address the FUFI problem, which mainly leverages the SR- 153

ResNet [23] under the structural constraint. UrbanFM devises 154

an M2-Normalization layer, which outputs a distributions 155

across every patch of M-by-M subregions of an associated 156

superregion. Shen et al. design a weather-affected FUFI 157

Predictor (WFRFP) model based on the super-resolution 158

scheme [24]. WFRFP explores the relationship between the 159

weather conditions and flow distributions, and reduces the 160

scope of the predicting area based on the corresponding 161
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coarse-grained flow map. However, the proposed archi-162

tecture heavily relies on empirically stacking deep neural163

networks. To solve this problem, Chen et al. introduces the164

deep neural network model from the perspective of the165

combination of differential equations and neural networks166

[25]. They regard the training and prediction of neural167

networks as the ordinary differential equation problems.168

Since the neural ordinary differential equations (NODE) is169

proposed, Zhou et al. find that NODE can be used as a170

core module to solve the FUFI problem, which proposes171

a more general neural ODE architecture called FODE [4].172

FODE can address the numerical instability problem of173

the previous method without causing additional memory174

costs. The key idea of FODE is to incorporate an affine175

coupling layer in each ODE block to avoid the inaccurate176

gradient issue. The difference between FODE and UrbanFM177

is that FODE utilizes ODE block instead of the ResNet block.178

Despite the success of the above models, existing techniques179

rely on massive parameters and complex neural network180

architectures.181

2.2 Self-Supervised Learning182

Self-supervised learning has gained popularity because it183

can avoid the cost of annotating large-scale datasets. It184

mainly uses auxiliary tasks (pretext) to mine some specific185

supervised information from the large-scale unsupervised186

data, and trains the network through this constructed super-187

vised information, in order to learn valuable representations188

for downstream tasks. According to the manifestation of189

self-supervision tasks, self-supervision is divided into the190

following three types: Context-based, Temporal-based and191

Contrastive-based approaches.192

Early Context-based self-supervised technique focuses193

on common rules to generate labels, such as Jigsaw puzzle194

[13], Image restoration [14], Color transformation [15] and195

Image rotations [16]. The above mentioned methods are196

applied in the field of computer vision. Besides, in the field197

of natural language processing, Word2vec [17] is a popular198

model to use sequence of sentences to construct auxiliary199

tasks for predicting words. Large-scale pre-training model200

Bert [18] uses MASK word method to construct auxiliary201

task. They have achieved remarkable results in many fields.202

Most of the methods introduced above are based on the203

samples’ meta information but with specific constraints204

between samples. One of the Temporal-based methods uses205

the concept of similar features in the video frame [26], [27].206

The assumption is that the features of adjacent frames in the207

video are similar, while the video frames are far apart that208

are dissimilar. Self-supervised constraints are performed by209

constructing such similar (positive) and dissimilar (nega-210

tive) samples. Another temporal-based method constructs211

positive and negative example features by tracking different212

frames of an object [28]. Recently, Contrastive-based has213

become a dominant component in self-supervised learning,214

which builds representations by encoding dissimilar or sim-215

ilar properties [29], [30].216

While self-upervised learning shines in the field of com-217

puter vision, natural language processing, video process-218

ing, etc, there is limited study focusing on the urban flow219

forecasting, especially in the FUFI problem. We will explore220

a spatio-temporal contrastive self-supervision method to 221

predict fine-grained urban flows. 222

TABLE 1: Symbol description.

Symbols Descriptions
X =

[
Xc

1,X
c
2, . . . ,X

c
T

]
The flow map contains T moments

I ; J
The granularity of division of

latitude and longitude
M The upscaling factor
xi,j The small region in flow

H ; W
The length and width of feature

maps in Hreg and Htcs

C The channel number of convolution kernel

Xmc; Xc; Xf

The down-scaling coarse-grained flows map;
The coarse-grained flows map;

The fine-grained flows map;

Hreg ; Hinf ; Htcs

The low-level hidden feature maps
for regional contrast, inference net,

and temporal contrast

Zreg ; Dtcs The high-level semantic features in
regional contrast and temporal contrast

Uf The flow inference high-level
semantic representation

Uf
o

The flow inference distribution
map of the hidden state

Wf The weight matrix of flow inference

2.3 Image Super-Resolution 223

Single image super-resolution (SISR) refers to the recon- 224

struction of a high-resolution image with only one low- 225

resolution observation image, combining with some prior 226

knowledge of the target image. It is one of the basic 227

issues related to the image processing, and has a wide 228

range of practical needs and application scenarios, e.g., 229

applied in the digital imaging technology [31], video coding 230

communication technology [32] and fine-grained crowd- 231

sourcing [33]. To date, there are three mainstream algo- 232

rithms of SISR: interpolation-based, reconstruction-based 233

and learning-based methods. In the interpolation-based 234

method, early techniques focused on bicubic interpola- 235

tion [34] and Lanczos resampling [35], which is fast but 236

not accurate. Reconstruction-based SR methods [36]–[38] 237

adopt sophisticated prior knowledge to solve Single image 238

super-resolution with flexible and sharp details. However, 239

as the scale factor increases, the performance of many 240

reconstruction-based methods declines rapidly and usu- 241

ally time-consuming. Learning-based SISR methods utilize 242

machine learning algorithms to analyze statistical relation- 243

ships between the low-resolution (LR) and its correspond- 244

ing high-resolution (HR) counterpart from a large quantity 245

training dataset. Change et al. [39] proposed the neighbor 246

embedding method that used the similar local geometry 247

between LR and HR to restore HR image blocks. Mean- 248

while, many researchers focus on combining the advantages 249

of reconstruction-based with learning-based methods [40]– 250

[42]. 251

With the rapid development of deep learning in recent 252

years, many studies have achieved great success since they 253

do not require many human-engineered features. An end-to- 254

end mapping method represented as CNNs between the LR 255
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and HR images is first proposed by Dong et al. [43]. Inspired256

by the superior performance of CNN, various models for257

CNN began to be applied for SR. Among them, Shi et258

al. [32] proposed an efficient sub-pixel convolutional layer259

to recover HR images with little additional computational260

cost compared with the deconvolutional layer. Due to the261

great progress of VGG-net in image classification [44], a262

deep CNN was applied for SISR in [45]. However, the263

deep network is prone to model degradation in the training264

phase. Kim et al. [45] proposed a residual structure that265

makes the training of deeper convolutional neural networks266

possible, which has greatly promoted the development of267

SISR.268

However, there is a great disparity between the FUFI and269

image super-resolution task, i.e., the unique structural con-270

straint in FUFI. structural constraint requires mining changes271

within the data from a coarse-grained view, while single272

image super-resolution on natural images is more inclined273

to recover the lost high-frequency information.274

3 PROBLEM STATEMENT275

Before clarifying our method, we firstly introduce some276

basic notations and then formulate the problem of FUFI.277

The main sysmbols used in this paper are summarized in278

Table 1.279

Definition 1 (Grid Flow Maps). Given a timestamp t,280

assume that X ∈ RI×J
+ is an urban flow map partitioned281

evenly into a I × J grid map at t, where a grid denotes a282

region as shown in Figure 1. Each entry xi,j ∈ R+ denotes283

the volume of the observed flow.284

Definition 2 (Superregion & Subregion). Figure 1 (a)285

and (b) illustrate the same city area but with two different286

division scales, the left sub-figure is the coarse-grained287

flows map (32 × 32) and the right one represents the fine-288

grained flows map (64 × 64). M denotes the scaling factor289

controlling the resolution changes between the coarse- and290

fine-grained maps. Figure 1 represents an example when M291

= 2. We use supperregion and subregions to define the larger292

grid and its constituent smaller regions respectively [3], [5].293

Definition 3 (Structural Constraint). The sum of the294

flow volumes in fine-grained subregions xf
i′ ,j′

strictly295

equals that of the corresponding superregion xci,j .296

xci,j =
∑
i′ ,j′

xf
i′ ,j′

s.t. i = b i
′

M
c, j = b j

′

M
c, (1)

where i = 1, 2, . . . , I and j = 1, 2, . . . , J .297

Fine-grained Urban Flow Inference. Given a coarse-298

grained map Xc ∈ RI×J
+ and the upscaling factor M ∈ Z+,299

the goal of this paper is to infer the fine-grained flow map300

Xf ∈ RMI×MJ
+ under the structural constraint.301

4 THE PROPOSED METHOD302

Figure 2 illustrates the flowchart of UrbanSTC. Our model303

is pre-trained by spatial self-supervision and temporal self-304

supervision, and then the pre-trained encoders are copied305

to the final network for fine-tuning. We propose three kinds306

of pretext strategies separately for the spatial and temporal307

self-supervision methods.308

4.1 Spatial Self-Supervision 309

Urban flow data has typical spatial characteristics. Inspired 310

by self-supervised learning, we provide two types of self- 311

supervision tasks on the spatial perspective: regional con- 312

trast and spatial super-resolution inference network. 313

4.1.1 Regional-level Contrast Pre-training 314

Regional contrast self-supervision is dedicated to mining 315

flow relationships at the regional level. At any timestamp 316

t, there are many regions having similar or dissimilar flow 317

conditions in the coarse-grained flow map Xc. In Figure 318

2, the light blue block (Reg) depicts an example for the 319

regional-level contrastive learning. Assume the black rect- 320

angle is an anchor region xq . The regions with red and blue 321

rectangles can be treated as positive and negative samples 322

respectively via a semantic distance with xq , as expressed in 323

Equation 2 and 3. 324

dists(xq,xi,j) =
√
(xq − xi,j)2, (2)

where xi,j is a candidate area in the flow map. 325

xi,j ∈
{

positive, dists(xq,xi,j) ≤ λ
negative, dists(xq,xi,j) > λ

(3)

in which λ is a threshold for distinguishing between positive 326

and negative samples. Because of the different semantic 327

distances among regions, we hope to remain such prop- 328

erties in their high-level representations, i.e, the represen- 329

tation distances between xq and positive regional samples 330

{x+
k1
}K1

k1=1 are closer enough, while all negative represen- 331

tations {x−k2
}K2

k2=1 are moving away from xq , where K1 332

and K2 are the numbers of selected positive and negative 333

regional samples. 334

For a coarse-grained flow map Xc, we first project it 335

into a low-level hidden feature map Hreg ∈ RH×W×C
336

by utilizing a non-linear encoder. This component of our 337

network is named regional level encoder Encreg (·) which 338

will be used in the fine-tuning process. Thereafter, Hreg
339

is normalized by a batch normalization method [46] and 340

reshaped to Sreg ∈ RHW×C . At last, a fully connected layer 341

with C hidden units produces high-level semantic features 342

Zreg ∈ RHW×C for the coarse-grained flow map Xc. Unlike 343

some previous contrastive loss functions, such as InfoNCE 344

contrastive loss, only select one example as the positive 345

example strictly [30], [47], our method considers a set of 346

regions from Zreg as positive samples, and put all the rest 347

as negative samples, which is similar as the strategy in [48]. 348

Given a coarse-grained flow map Xc, we can obtain its 349

dense representation Zreg . For each Xc, we will randomly 350

select the regional anchor point, and distinguish positive 351

and negative regional samples by calculating the Euclidean 352

distances based on a pre-defined threshold λ. Then our 353

contrastive loss function is expressed as: 354

Lreg = − log

∑K1
k1=1 exp sim(zq, z+k1

)∑K1
k1=1 exp sim(zq, z+k1

) +
∑K2

k2=1 exp sim(zq, z−k2
)
,

(4)
where zq, z+k1

, z−k2
∈ Zreg and sim(u,v) is similarity func- 355

tion between two representations (e.g., inner product). 356
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Fig. 2: The framework of UrbanSTC. There are there major parts: spatial self-supervision, temporal self-supervision and
fine-tuning stage. Reg (light blue block) represents the Regional-level contrast; Inf (Light pink block) represents the Spatial
super-resolution inference; TCS (Light yellow block) represents the Temporal contrast. Dec indicates a decoder that can
convert the embedding vectors generated by the spatio-temporal self-supervision into the output fine-grained maps.
UrbanSTC includes pre-training and fine-tuning stages. Among, Reg and Inf belong to the spatial self-supervision pre-
training. TCS belongs to the temporal self-supervision pre-training. We first learn encoders through a spatio-temporal
pre-training, and finally complete the network in the fine-tuning stage.

Through this method, positive regional samples should357

make similar representations close to each other rather than358

negative types of samples.359

4.1.2 Spatial Super-resolution Inference Network Pre-360

training361

Given a coarse-grained map Xc ∈ RI×J
+ and upscaling362

factor M ∈ Z+, FUFI aims to learn a super-resolution363

model to infer the fine-grained flow map Xf ∈ RMI×MJ
+364

under the structural constraint. The most important learning365

mechanism is how to split a coarse region xcij to its M2
366

fine-grained cells, which can be represented as I ∈ R1×1
+ →367

M ∈ RM×M
+ . To simulate this process, we design a spatial368

super-resolution inference network in our pre-training.369

Our intention is to use a coarser granularity map to infer370

the pattern I→ M with a pretext-task. In detail, we first get371

a down-scaling coarser granularity map Xmc ∈ Rb
I
M c×b

J
M c

+ 372

based on the coarse-grained map Xc and M , where each 373

entry of Xmc equals to the sum of corresponding M2 flow 374

volumes in Xc. Then we can construct a spatial super- 375

resolution network inferring Xc from Xmc. This pre-text 376

task is able to capture the I → M pattern in advance, and 377

could be benefit for improving the inference capability of 378

surrounding flows. 379

For a Xmc, we first encode it by two convolutional 380

layers with C channels and 3 × 3 kernel size, each layer 381

followed by Relu nonlinearity as shown in Figure 3. The 382

two convolutional layers are taken as a feature learning 383

network to map Xmc to the low-level hidden feature maps 384

Hinf ∈ R H
M×

W
M ×C . This component of our network is 385

named spatial super-resolution encoder Encinf (·) which 386

is used later in the fine-tuning process. Then we can 387
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Fig. 3: Spatial Super-resolution Inference Network Pre-
training. We get a down-scaling coarser granularity map
(more coarse-grained) Xmc based on the coarse-grained
map Xc and upscaling factor M . Spatial super-resolution
inference network simplifies the difficulty of the task and
imitates the process of inferring.

leverage the prior FUFI methods distributional upsampling388

at the end of their networks [3]–[5]. We also adopt M2-389

Normalization1 to impose the structural constraint on the390

network. The final loss is computed by the pixel-wise Mean391

Square Error (MSE):392

Linf =
1

T

T∑
t=1

‖Xc
t −Finf (X

mc
t ; θ)‖2 , (5)

where θ represents all learnable parameters in the inference393

network.394

This inference structure and function Finf are similar to395

our final fine-tuning UrbanSTC, please refer to Section 4.4396

for details.397

4.2 Temporal Self-Supervision398

Existing FUFI studies focus on inferring the fine-grained399

flow map based solely on its coarse-grained one, ignoring400

that similar flow conditions at different moments will also401

contribute to the inference. Here we devise a temporal-402

contrastive self-supervision network (TCS) to extract the403

similarity information in the temporal dimension. For any404

timestamp t, we can get an anchor point Xc
t , and then405

collect its positive ({X+
t,k3
}K3

k3=1) and negative samples406

({X−t,k4
}K4

k4=1) by identifying the similarities among sam-407

ples, where K3 and K4 are the numbers of selected positive408

and negative temporal samples.409

TCS constructs a self-supervised auxiliary task that nar-410

rows encoder features between the anchor example and411

positive samples, and keeps the negative samples far away.412

The TCS encoder Enctcs (·) has a similar structure to413

the spatial super-resolution inference network. It projects414

coarse-grained map Xc
t to the low-level hidden feature map415

Htcs
t ∈ RH×W×C . Then we adopt a batch normalization416

layers and the global average pooling layer. Finally, Mul-417

tilayer Perceptron (MLP) with Relu activation function is418

used to make nonlinearity, converting the encoder feature419

map Htcs
t to the high-level semantic features Dtcs

t ∈ RC .420

As shown in Figure 2 the light yellow block (TCS), there are421

three kinds of samples: anchor point, positive and negative422

samples. Next, we will introduce how to select them.423

1. M2-Normalization is shown in Section 4.4, Equation 15.

4.2.1 Hard Sampling 424

We first use a straightforward way to pick the closest and the 425

farthest samples of anchor point as its positive and negative 426

pair. The distances between samples are calculated by the 427

Euclidean distance method: 428

distt(Xc,Xk) =

√√√√ 1

HW

H∑
i=1

W∑
j=1

(Xc
i,j −Xk

i,j)
2, (6)

where Xc is the current coarse-grained flow map and Xk
429

is the flow map at other times. As shown in Figure 2, the 430

module of Temporal self-supervision, there are three types 431

of samples indicating by green, red and blue points. They 432

represent the anchor point, positive samples and negative 433

samples respectively. Hard sampling method aims to select 434

the closest (positive) sample with the current anchor, and 435

find the farthest one as the negative sample. Note that, 436

time-contrastive approaches are widely used in the video 437

processing, such as [26], [27], which only picks the positive 438

samples within a time window, and put all the rest into the 439

negative pool. It is because the natural analogies between 440

adjacent frames of video data. However, the previous and 441

next traffic snapshots are probably not the closest semantic 442

samples of the anchor point due to the high periodicity in 443

traffic flow prediction problems [49]. Thus we choose to 444

calculate distances between the anchor point and all training 445

samples. 446

4.2.2 Weight Sampling 447

Considering that the hard sampling cannot fully use the 448

correlations among all temporal samples {Xc
t}Tt=1, we fur- 449

ther propose a weight sampling method in this section. In 450

detail, we select Top-K positive and negative samples with 451

a weighted combination approach: 452

X+
t =

K∑
k=1

1/disttk∑K
j=1 1/dist

t
j

X+
t,k, (7)

X−t =
K∑

k=1

disttk∑K
j=1 dist

t
j

X−t,k, (8)

where disttk denotes the Euclidean distance between the 453

anchor point and k-th selected sample. 454

Algorithm 1 shows the detailed procedure of the weight 455

sampling method. The results affected by these two sam- 456

pling methods have been presented in Section 5.2.3. 457

TCS uses a triplet loss [50] to optimize the pre-trained 458

model. Given a triplet constraint I =< Xc,X+,X− >. The 459

triplet loss ensures that a pair of co-occuring Xc
t (anchor) 460

and X+
t (positive) are closer to each other in the embedding 461

space while moving away from X−t (negative). We define the 462

score of this triplet as: 463

df (I) =
∥∥f(Xc

t)− f(X+
t )
∥∥2
2
−
∥∥f(Xc

t)− f(X−t )
∥∥2
2
+α, (9)

LTCS =
1

T

T∑
t=1

(max {df (I), 0}), (10)
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Algorithm 1: Weight Sampling

Input: original coarse data {Xc }.
Output: complete data {Xc,X+,X−}.

1 for x ∈ {Xc
1, . . . ,X

c
T } do

2 Build Max-heap and Min-heap.
3 for y ∈ {Xc

1, . . . ,X
c
T } do

4 if x 6= y then
5 Calculate the Euclidean distance dist

between x and y.
6 Adjust Max-head and Min-heap.

7 Select Top-k positive and negative samples
respectively.

8 get X+
t by Equation 7

9 get X−t by Equation 8
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Fig. 4: External Factors Fusion. External Factors are sepa-
rated into continuous features (blue block) and categorical
features (yellow block).

where f (.) is a non-linear mapping function that needs to464

be learned, and α is a positive margin parameter. Notably,465

the triplet constraint is more flexible to adapt to different466

levels of intra-class variances [51], [52], which guarantees467

the differences between various timestamps.468

4.3 External Factor Fusion469

External factors (e.g., temperature, wind speed, weather and470

holidays) affect the flow distribution over the subregions.471

For example, people are more inclined to walk out of the472

office area on holidays. And when bad weather comes,473

people prefer to stay indoors instead of outdoors. Therefore,474

we should take such external factors into consideration.475

We initialize the external factors into continuous fea-476

tures and categorical features. Among them, continuous477

features including temperature and wind speed are directly478

concatenated to form a vector econ. Categorical features479

include timestamps, days, holidays and weather conditions480

(e.g., windy, rainy). We use the method in UrbanFM [3]481

to initializes external information. The categorical features482

are transformed into low-dimensional vectors by feeding483

into separate embedding layers, and then use concatenate484

operation to construct the categorical vector ecat. Then, we485

splice the two vectors econ and ecat to the final external486

embedding (e = [econ; ecat]).487

As shown in Figure 4. we use two layers of multi-488

layer perception with nonlinear transformation to feed ex-489

ternal embedding e. By using nonlinear transformation,490

different external factors are converged into a hidden state491

Xe ∈ RI×J
+ . We regard it as a bias of flow graph. In492

the previous sections, we only used coarse-grained views 493

without external information for pre-training. Finally, we 494

use the tensor addition operation Xc + Xe as the input of 495

the model in the fine-tuning stage. 496

4.4 Fine-Tuning UrbanSTC 497

We derive three encoders when completing the above pre- 498

training tasks, i.e., regional constrastive encoder Encreg (·), 499

spatial super-resolution inference encoder Encinf (·) and 500

TCS encoder Enctcs (·). As illustrated in Figure 2, three 501

encoders are used for fine-tuning the downstream task. 502

First, we combine three low-level hidden feature maps by 503

encoders. This step can be described as: 504

Hreg = Encreg(X
c), (11)

505

Hinf = Encinf (X
c), (12)

506

Htcs = Enctcs(X
c), (13)

507

Ha = Concat(Hreg,Hinf ,Htcs), (14)

where Concat is the tensor concatenate operation. Then 508

Decoder has a convolutional layer (3 × 3, C) with ReLU 509

nonlinearity, which is used to decode three low-level hidden 510

features. Besides, we adopt another convolutional layer 511

(3 × 3, C ×M2) and PixelShuffle layers, which rearranges 512

features and increases sizes by the upscaling factor M . At 513

the end of PixelSuffle, we use a ReLU activation function. 514

After the above operations, a feature Uf ∈ RMH×MW×C
515

is obtained where the first two dimensions have been in- 516

creased M times. Next, we use a 3× 3 convolution with the 517

1-size channel to get a fine-grained flow distribution map of 518

the hidden state Uf
o ∈ RMH×MW×1. Due to the structural 519

constraint of FUFI problem, the MSE loss cannot be used 520

directly. Refer to the distributional upsampling in UrbanFM 521

[3] and FODE [4], we choose a M2-Normalization that 522

makes the sum of subregions equal to their corresponding 523

superregion, which is described as: 524

W f
(i,j) =

Uf
o(i,j)∑

i
′∈(b i

M cM,(b i
M c+1)M)]

j
′∈(b j

M cM,(b j
M c+1)M)]

Uf

o(i′ j′ )

, (15)

where Uf
o(i,j) is the i-th row and j-th column cell in Uf

o and 525

W f
(i,j) ∈ [0, 1] represents probability. 526

M2-Normalization aims to learn the probability map- 527

ping from a coarse-grained view to a fine-grained view. 528

Finally, we infer the fine-grained crowds map by X̂f = 529

Xc �Wf . Mean Square Error (MSE) is used as the loss 530

function: 531

L =
1

T

T∑
t=1

∥∥∥Xf
t −F (Xc

t ; θ)
∥∥∥2 , (16)

where F represents the UrbanSTC model and θ represents 532

all learnable parameters used in this model. 533
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TABLE 2: Statistics of datasets.

Dataset TaxiBJ BikeNYC

Time span

P1: 7/1/2013-10/31/2013
P2: 2/1/2014-6/30/2014 1/1/2019-
P3: 3/1/2015-6/30/2015 31/3/2019

P4: 11/1/2015-3/31/2016
Time interval 30 minutes 1 hour

Coarse-grained size 32×32 40×20
Fine-grained size 128×128 80×40

Upscaling factor(M) 4 2
Latitude range 39.82◦N− 39.99◦N 40.65◦N− 40.81◦N

Longitude range 116.26◦E− 116.49◦E 73.93◦W − 74.01◦W

External Factors (meterology, time and event) in TaxiBJ dataset
Temperature/◦C [−24.6, 41.0] \

Wind speed/mph [0, 48.6] \
Weather conditions 16 types (e.g., Sunny) \

Holidays 18 \

5 EXPERIMENTS534

In this chapter, we have conducted comprehensive535

experiments to demonstrate the effectiveness of536

our method. The source code has been released at537

https://github.com/HaoQu59/UrbanSTC.538

5.1 Experimental Settings539

5.1.1 Datasets540

We evaluate the performance of our model as well as base-541

lines on two real-world urban flow datasets. The dataset542

statistics are shown in Table 2. In the experiments, we543

partition the data into non-overlapping training, validation544

and test data by a ratio of 2:1:1 respectively.545

• TaxiBJ [3], [5] This dataset is collected from Beijing taxi546

flows, including four different periods: P1 to P4. The time547

interval is 30 minutes.548

• BikeNYC2 This dataset is collected from an open web-549

site that contains bike flow data in New York City from Jan550

1 to Mar 31, 2019. We partition the city area into 40×20 grids551

as the coarse-grained map, and define the fine-granularity552

map with 80×40.553

5.1.2 Baselines554

We compare the proposed method UrbanSTC with the555

following 13 baselines, including three types of methods,556

Heuristic, state-of-the-art image super-resolution and FUFI557

methods. All parameters of the proposed method and base-558

lines adopt M2-Normalization to obey the structural con-559

straint of FUFI.560

Heuristic methods:561

• Mean Partition (Mean): We evenly distribute coarse-562

grained maps into fine-grained maps according to the scal-563

ing factor.564

• Historical Average (HA): Predict the fine-grained sub-565

regions by the historical average of its corresponding super-566

region, and distribute flows into sub-regions based on his-567

torical split proportions.568

Image super-resolution methods:569

2. https://www.citibikenyc.com/system-data

• SRCNN [43]: It is the first method to introduce 570

convolutional neural networks (CNNs) into image super- 571

resolution problems. SRCNN first uses bicubic interpolation 572

to enlarge the low-resolution image to the target size, then 573

fits the nonlinear mapping through a three-layer convo- 574

lutional network, and finally outputs the high-resolution 575

image result. 576

• ESPCN [32]: ESPCN proposes a sub-pixel convolution 577

method to extract features directly from low-resolution im- 578

age size, and calculate an efficient method to obtain high- 579

resolution images. 580

• VDSR [45]: It is different from the three-stage archi- 581

tecture of SRCNN and ESPCN. VDSR is based on the idea 582

of residual structure and uses a resolution method of deep 583

neural networks with a depth of up to 20. 584

• SRResNet [23]: SRResNet uses perceptual loss and ad- 585

versarial loss to improve the realism of the restored picture. 586

Perceptual loss is the feature extracted by the convolutional 587

neural network. 588

• DeepSD [53]: DeepSD is the state-of-the-art method on 589

statistical upscaling (i.e., super-resolution) for meteorologi- 590

cal data. It uses a stacked strategy to use multiple SRCNNs 591

for intermediate-level downscaling, and performs further 592

upsampling by simply stacking these SRCNNs. 593

• LapSRN [54]: LapSRN is divided into two parts: 594

feature extraction and image reconstruction. It uses low- 595

resolution images directly as input to the network, and 596

through step-by-step amplification, while reducing the 597

amount of calculation, it also effectively improves the ac- 598

curacy. And between the levels of each pyramid and within 599

each level, parameter sharing is carried out through recur- 600

sive. 601

• IMDN [55]: IMDN is a lightweight network architec- 602

ture which contains distillation and selective fusion parts 603

to address issues that excessive convolutions will limit the 604

application of super-resolution technology in low comput- 605

ing power devices. They first use the distillation module to 606

extract the hierarchical structure, and then use the contrast- 607

based channel attention to fuse the features. 608

• SCN [56]: It is proved that modeling the scale in- 609

variance into the neural network can significantly improve 610

the image restoration performance. Inspired by the spatial 611

convolution of shift-invariance, ”scale-wise convolution” is 612

proposed to convolve across multiple scales for scale invari- 613

ance. 614

FUFI methods: 615

• UrbanFM [3]: UrbanFM first proposes Fine-grained 616

urban flow super-resolution. Its difficulty is that the sum of 617

the flow of multiple fine-grained areas is equal to the flow 618

of a coarse-grained area and the mutual influence between 619

adjacent areas. UrbanFM designs stacking ResNet-based 620

neural networks and M2-Normalization layer to overcome. 621

•UrbanPy [5]: A progressive method of UrbanFM which 622

uses a cascading model for forecasting fine-grained urban 623

flows by decomposing the original tasks into multiple sub- 624

tasks. 625

• FODE [4]: FODE is the state-of-the-art method in 626

fine-grained Urban Flow Super-Resolution. Inspired by the 627

Neural Ordinary Differential Equations (NODE) [25]. They 628

propose FODE block replaces ResNet as the backbone. 629
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TABLE 3: The average RMSE, MAE and MAPE on TaxiBJ dataset (P1) with different proportions of training data. The best
results are bold and the second best are underlined.

Methods
P1(20%) P1(40%) P1(60%) P1(80%) P1(100%)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
MEAN 20.918 12.019 4.469 20.918 12.019 4.469 20.918 12.019 4.469 20.918 12.019 4.469 20.918 12.019 4.469

HA 4.794 2.269 0.339 4.802 2.263 0.338 4.793 2.258 0.338 4.785 2.256 0.337 4.772 2.251 0.336
SRCNN 4.737 2.767 0.804 4.498 2.578 0.706 4.506 2.587 0.712 4.290 2.425 0.631 4.275 2.430 0.642
ESPCN 4.552 2.583 0.682 4.493 2.540 0.657 4.264 2.346 0.558 4.216 2.316 0.544 4.208 2.318 0.546
DeepSD 4.532 2.535 0.652 4.346 2.373 0.566 4.883 2.834 0.805 4.287 2.349 0.556 4.128 2.248 0.516
VDSR 4.546 2.556 0.669 4.299 2.354 0.562 4.198 2.279 0.527 4.119 2.229 0.503 4.054 2.186 0.485

SRResNet 4.734 2.800 0.844 4.383 2.520 0.696 4.276 2.437 0.654 4.179 2.366 0.618 4.079 2.291 0.580
LapSRN 4.676 2.738 0.801 4.642 2.715 0.789 4.309 2.432 0.635 4.153 2.305 0.567 4.083 2.255 0.542
IMDN 4.696 2.748 0.794 4.388 2.464 0.635 4.251 2.376 0.601 4.159 2.295 0.554 4.085 2.253 0.538
SCN 4.395 2.491 0.661 4.219 2.351 0.588 4.096 2.250 0.536 4.028 2.203 0.515 3.965 2.162 0.494

UrbanFM 4.560 2.343 0.398 4.321 2.213 0.369 4.195 2.140 0.350 4.108 2.095 0.340 4.042 2.062 0.337
UrbanPy 4.665 2.471 0.547 4.363 2.233 0.415 4.112 2.077 0.349 4.033 2.041 0.343 3.944 1.998 0.333

FODE 4.476 2.304 0.391 4.260 2.170 0.349 4.161 2.116 0.344 4.084 2.078 0.338 4.002 2.044 0.336
UrbanSTC 4.083 2.022 0.302 3.988 1.983 0.302 3.941 1.962 0.301 3.900 1.942 0.298 3.845 1.922 0.298

∆ +7.10% +12.24% +10.91% +5.48% +8.62% +10.65% +3.78% +5.54% +10.95% +3.18% +4.85% +11.57% +2.51% +3.80% +10.51%

TABLE 4: The average RMSE, MAE and MAPE on TaxiBJ dataset (P2) with different proportions of training data. The best
results are bold and the second best are underlined.

Methods
P2(20%) P2(40%) P2(60%) P2(80%) P2(100%)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
MEAN 26.729 15.350 5.364 26.729 15.350 5.364 26.729 15.350 5.364 26.729 15.350 5.364 26.729 15.350 5.364

HA 6.568 2.889 0.358 5.875 2.679 0.342 5.669 2.620 0.338 5.544 2.587 0.335 5.512 2.576 0.334
SRCNN 5.613 3.201 0.837 4.994 2.855 0.706 5.172 3.036 0.801 4.924 2.839 0.713 4.978 2.896 0.748
ESPCN 5.461 3.062 0.738 5.186 2.987 0.740 4.934 2.779 0.637 4.554 2.473 0.482 5.072 2.957 0.749
DeepSD 5.412 2.991 0.704 5.608 3.290 0.892 4.716 2.585 0.546 5.018 2.816 0.659 4.909 2.738 0.625
VDSR 5.449 3.024 0.727 4.753 2.608 0.561 4.954 2.795 0.660 4.494 2.444 0.492 4.429 2.402 0.475

SRResNet 5.801 3.420 0.992 4.946 2.878 0.749 4.702 2.760 0.653 4.572 2.600 0.614 4.548 2.573 0.605
LapSRN 5.717 3.343 0.931 4.844 2.751 0.664 4.818 2.753 0.673 4.535 2.525 0.554 4.555 2.556 0.569
IMDN 5.790 3.547 1.123 4.927 2.971 0.853 4.710 2.792 0.755 4.573 2.688 0.703 4.476 2.608 0.661
SCN 5.222 2.932 0.721 4.640 2.567 0.579 4.487 2.475 0.528 4.402 2.422 0.505 4.336 2.381 0.490

UrbanFM 5.546 2.855 0.433 4.805 2.469 0.353 4.588 2.365 0.336 4.489 2.309 0.324 4.414 2.272 0.318
UrbanPy 5.528 2.803 0.485 4.728 2.412 0.370 4.464 2.276 0.334 4.446 2.279 0.341 4.315 2.210 0.323

FODE 5.362 2.734 0.395 4.704 2.416 0.337 4.538 2.331 0.323 4.434 2.285 0.325 4.366 2.248 0.317
UrbanSTC 4.975 2.424 0.297 4.454 2.231 0.294 4.347 2.185 0.288 4.274 2.157 0.288 4.225 2.136 0.288

∆ +4.73% +11.34% +17.04% +4.01% +7.50% +12.76% +2.62% +4.00% +10.84% +2.91% +5.35% +11.11% +2.09% +3.35% +9.15%

TABLE 5: The average RMSE, MAE and MAPE on TaxiBJ dataset (P3) with different proportions of training data. The best
results are bold and the second best are underlined.

Methods
P3(20%) P3(40%) P3(60%) P3(80%) P3(100%)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
MEAN 27.442 16.029 5.612 27.442 16.029 5.612 27.442 16.029 5.612 27.442 16.029 5.612 27.442 16.029 5.612

HA 5.833 2.741 0.337 5.746 2.713 0.333 5.731 2.707 0.331 5.692 2.695 0.330 5.675 2.670 0.328
SRCNN 5.581 3.317 0.906 5.150 2.962 0.728 5.082 2.936 0.718 4.923 2.821 0.666 4.891 2.817 0.673
ESPCN 5.273 3.013 0.717 5.043 2.848 0.638 5.091 2.888 0.656 4.796 2.668 0.556 4.853 2.716 0.579
DeepSD 5.257 2.935 0.666 5.048 2.796 0.606 4.960 2.749 0.583 4.878 2.690 0.559 4.720 2.580 0.510
VDSR 5.285 2.982 0.699 4.963 2.748 0.591 4.786 2.626 0.536 4.695 2.568 0.512 4.616 2.522 0.495

SRResNet 5.578 3.352 0.945 5.120 2.998 0.776 4.934 2.857 0.705 4.773 2.734 0.643 4.658 2.648 0.602
LapSRN 5.832 3.535 1.019 5.135 2.970 0.740 5.041 2.920 0.721 4.923 2.828 0.675 4.641 2.589 0.550
IMDN 5.635 3.493 1.077 5.143 3.107 0.876 4.908 2.930 0.788 4.745 2.794 0.715 4.690 2.765 0.704
SCN 5.090 2.899 0.694 4.826 2.702 0.601 4.670 2.593 0.549 4.575 2.531 0.522 4.514 2.494 0.506

UrbanFM 5.299 2.738 0.379 4.951 2.558 0.350 4.761 2.456 0.336 4.656 2.408 0.330 4.578 2.356 0.314
UrbanPy 5.342 2.827 0.529 4.946 2.532 0.382 4.743 2.443 0.362 4.578 2.346 0.332 4.436 2.272 0.318

FODE 5.165 2.686 0.380 4.875 2.521 0.347 4.712 2.434 0.331 4.616 2.387 0.327 4.536 2.345 0.319
UrbanSTC 4.781 2.383 0.287 4.607 2.309 0.292 4.512 2.271 0.288 4.439 2.240 0.288 4.382 2.215 0.285

∆ +6.07% +11.28% +14.84% +4.54% +8.41% +12.31% +3.38% +6.70% +12.99% +2.97% +4.52% +11.93% +1.22% +2.51% +9.24%
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TABLE 6: The average RMSE, MAE and MAPE on TaxiBJ dataset (P4) with different proportions of training data. The best
results are bold and the second best are underlined.

Methods
P4(20%) P4(40%) P4(60%) P4(80%) P4(100%)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
MEAN 19.049 11.070 4.192 19.049 11.070 4.192 19.049 11.070 4.192 19.049 11.070 4.192 19.049 11.070 4.192

HA 4.306 2.067 0.319 4.238 2.052 0.319 4.209 2.043 0.319 4.223 2.045 0.320 4.201 2.039 0.320
SRCNN 4.048 2.369 0.668 4.065 2.381 0.660 3.799 2.182 0.569 3.944 2.277 0.613 3.813 2.188 0.571
ESPCN 3.983 2.290 0.600 3.865 2.187 0.542 4.112 2.430 0.684 3.853 2.194 0.552 3.914 2.277 0.607
DeepSD 3.980 2.240 0.562 3.910 2.181 0.527 3.924 2.215 0.552 3.806 2.121 0.511 3.662 2.030 0.472
VDSR 3.952 2.239 0.573 3.741 2.075 0.489 3.655 2.015 0.462 3.644 2.007 0.457 3.555 1.948 0.431

SRResNet 4.118 2.463 0.738 4.053 2.431 0.729 3.761 2.184 0.591 3.710 2.102 0.508 3.630 2.067 0.523
LapSRN 4.467 2.753 0.884 4.150 2.489 0.745 3.705 2.103 0.530 3.673 2.080 0.520 3.679 2.118 0.544
IMDN 4.100 2.530 0.818 3.828 2.301 0.686 3.703 2.203 0.635 3.619 2.119 0.580 3.848 2.340 0.720
SCN 3.798 2.154 0.550 3.660 2.048 0.496 3.573 1.987 0.467 3.524 1.952 0.450 3.486 1.927 0.439

UrbanFM 4.054 2.126 0.373 3.794 1.969 0.330 3.677 1.908 0.323 3.601 1.865 0.315 3.559 1.841 0.305
UrbanPy 3.959 2.088 0.413 3.740 1.936 0.342 3.644 1.889 0.332 3.606 1.868 0.325 3.470 1.801 0.313

FODE 3.912 2.042 0.350 3.725 1.930 0.321 3.627 1.879 0.314 3.565 1.846 0.308 3.529 1.828 0.304
UrbanSTC 3.640 1.837 0.278 3.542 1.796 0.282 3.474 1.769 0.282 3.454 1.759 0.283 3.416 1.742 0.278

∆ +4.16% +10.04% +12.85% +3.22% +6.94% +11.60% +2.77% +5.85% +10.19% +1.99% +4.71% +8.12% +1.56% +3.28% +8.55%

5.1.3 Evaluation Metrics630

We evaluate different methods with three widely used631

metrics: Root Mean Squared Error (RMSE), Mean Absolute632

Error (MAE) and Mean Absolute Percentage Error (MAPE).633

RMSE =

√√√√ 1

N

N∑
i=1

(
Xi − X̂i

)2

MAE =
1

N

N∑
i=1

∣∣∣Xi − X̂i

∣∣∣
MAPE =

1

N

N∑
i=1

∣∣∣∣∣Xi − X̂i

Xi

∣∣∣∣∣
where X̂i is a prediction for fine-grained flow, and Xi is the634

ground truth; N is the number of prediction values.635

5.1.4 Training Details & Hyperparameters636

Our model and baselines are completely implemented by637

PyTorch 1.60 with a RTX 2080 GPU. The network is trained638

using Adam with the first and second moment estimates639

equaling to 0.9 and 0.999, respectively [57]. The initial learn-640

ing rate is set to be 1e-3, and is divided by 2 after 50 epochs,641

which allows smoother search near the convergence point.642

The mini-batch size is 16, and the number of base channels643

is 128.644

5.2 Results on TaxiBJ645

We first assess the performances of our model and baselines646

on TaxiBJ with a varying ratio of training data. Table 3 -647

6 report the prediction results. Note that, the variances of648

the results are almost in the range of 0.000 - 0.002, thus we649

omit the variances. We summarize the tables with several650

key observations:651

(1) UrbanSTC outperforms all competitive methods652

across the entire time spans (P1-P4). By comparing to653

current state-of-the-art methods, UrbanSTC has improved654

2.51%, 3.80% and 10.51% for RMSE, MAE and MAPE on655

average on TaxiBJ-P1 with 100.00% training data.656

TABLE 7: Ablation Studies. We report the strategies used in
different models on TaxiBJ dataset’s average results.

Regional
contrast

Spatial
super-resolution

Temporal
contrast

TaxiBJ
RMSE MAE MAPE

X 4.118 2.100 0.311
X 4.019 2.040 0.297

X 4.008 2.027 0.290
X X 3.970 2.009 0.289
X X 3.983 2.009 0.287

X X 3.975 2.008 0.288
X X X 3.967 2.004 0.287

(2) It is apparent that UrbanSTC can achieve the best 657

results when training data decreases. Taking TaxiBJ-P1 (20% 658

training data) for example, UrbanSTC yields 7.10%, 12.24% 659

and 10.91% relative improvements in terms of RMSE, MAE 660

and MAPE, respectively. 661

The above results show that UrbanSTC has its own 662

advantages in the absence of training data resources. This 663

is consistent with our motivation that spatio-temporal con- 664

trastive self-supervision can better learn flow feature rep- 665

resentations and improve FUFI performance. Image super- 666

resolution method SCN [56] performers better than other 667

baselines with metric RMSE on 20% - 80% TaxiBJ datasets, 668

while shows deteriorate scores on MAE and MAPE. It 669

is mainly because SCN is a state-of-the-art image super- 670

resolution method with the root mean square loss func- 671

tion. However, most image super-resolution methods are 672

not adapt to the FUFI problem since they do not consider 673

the structural constraint when designing models. Compared 674

with UrbanFM, UrbanPy, and FODE, spatio-temporal con- 675

trastive learning method UrbanSTC can provide the better 676

latent representations that performs most through all exper- 677

iments. 678

5.2.1 Ablation Analysis 679

To analyses the contribution of each component of Ur- 680

banSTC, we analyze the ablation study in this section. 681

We only report the evaluation metrics on TaxiBJ dataset 682

(average result of P1 to P4) because the experimental results 683
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Fig. 5: Visualization of the Ablation Study.

on BikeNYC can make similar conclusions. All the results684

are shown in Table 7. The term “Reg” means the regional-685

level contrast pre-training; “Inf” illustrates the spatial super-686

resolution inference network; “TCS” indicates the temporal687

contrast is used or not.688

We can clearly see that the combination of any two689

components is better than the single one, which proves690

the effectiveness of our proposed components. When only691

considering one strategy, temporal contrast performs better692

than regional-level contrast and the spatial super-resolution693

inference network. Spatial contrast contains two compo-694

nents, “Reg” and “Inf”. We find that the effect of the spatial695

super-resolution network (Inf) is better than the regional-696

level contrast (Reg). It is mainly because the kernel of the697

Reg encoder is 1 × 1, while that of in Inf encoder is 3 × 3,698

where the larger convolution kernel size helps to capture699

more information in the encoder. The results of combination700

of “Reg” + “TCS” and “Inf” + “TCS” are slightly worse than701

the final model, indicating that such prior knowledge con-702

sidered both spatial and temporal information is significant703

for the fine-grained urban flow inference.704

To better present the ablation results, we draw some705

comparable images in Figure 5. Figure 5 shows the inference706

errors
∥∥∥Xf − X̂f

∥∥∥
1,1

generated by UrbanSTC and other707

ablation parts, where a brighter pixel indicates a large error.708

A (West TuCheng Road) and B (Sanyuan bridge) are the709

main traffic arteries in Beijing. It is apparent that UrbanSTC710

achieves better results than other ablation experiments,711

which proves that the final structure of the proposed model712

can better capture the spatio-temporal characteristics of flow713

data.714

5.2.2 End-to-end and two-stage Comparison715

To verify the effectiveness of the two-stage training pro-716

cess and end-to-end training process, we conduct experi-717

ments in TaxiBJ (average result of P1 to P4) and BikeNYC718

datasets. The end-to-end model integrates three proposed719

modules, i.e., the coarse-grained flow map is introduced to720

TABLE 8: End-to-end and two-stage comparison.

Mehtods
TaxiBJ BikeNYC

RMSE MAE MAPE RMSE MAE MAPE
End-to-End 3.980 2.053 0.294 1.120 0.245 0.077
Two-stage 3.958 1.998 0.284 1.093 0.236 0.073

∆ 0.55% 2.68% 3.40% 2.41% 3.67% 5.19%

20% 40% 60% 80% 100%
Fraction of training data used (%)

1.92

1.94

1.96

1.98

2.00

2.02

M
AE

Hard Sampling
Weight Sampling

Fig. 6: Performance comparison between Hard Sampling
and Weight Sampling on TaxiBJ-P1 dataset.

the spatial self-supervision, temporal self-supervision and 721

external factor learning simultaneously, and optimize these 722

three loss functions integrally. As shown in Table 8, we 723

can clearly find that the two-stage experimental results are 724

better than the end-to-end training process. The end-to-end 725

training method needs to adjust the balance factors between 726

each loss function, while the two-stage training method is 727

not required to adjust the balances among pretexts. The 728

advantage of the self-supervised learning lies in two-stage 729

training. The pretexts help the model in learning the internal 730

characteristics of the data in advance, and the fine-tuning 731

stage then learns the corresponding label information [30], 732

[47], [58], [59]. 733

5.2.3 Temporal Contrastive Sampling Analysis 734

To evaluate the effect of hard sampling and weight sampling 735

methods, we report the experimental results on TaxiBJ-P1. 736

The tests drawn in Figure 6 demonstrate that the weight 737

sampling is better than the hard sampling when the propor- 738

tion of used training data is lower than 60%. This is because 739

the weight sampling method can comprehensively use top 740

K related samples, while the hard sampling only uses the 741

most similar or dissimilar data. With the amount of training 742

data increases, hard sampling begins to show a better per- 743

formance than weight sampling. When the training dataset 744

is small, we can hardly to pick up the global most similar 745

sample, but use top-K similar samples instead. Otherwise, 746

if the most similar sample is found with the training data 747

increasing, the hard sampling method can achieve the better 748

result. Therefore, a combination of two methods can be 749

adopted in different training scenarios. 750
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TABLE 9: The average RMSE, MAE and MAPE on TaxiBJ dataset with external factors. Note that ”+E” represents a model
that incorporates external factors. The best results are bold.

Methods P1 P2 P3 P4
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

UrbanFM+E 3.970 2.023 0.334 4.355 2.239 0.317 4.530 2.335 0.321 3.528 1.824 0.303
UrbanPy+E 3.909 1.981 0.330 4.353 2.230 0.327 4.466 2.294 0.323 3.498 1.817 0.317

FODE+E 3.915 1.996 0.332 4.348 2.235 0.316 4.505 2.329 0.314 3.505 1.821 0.311
UrbanSTC 3.845 1.922 0.298 4.225 2.136 0.288 4.382 2.215 0.285 3.416 1.742 0.278

UrbanSTC+E 3.841 1.917 0.292 4.209 2.125 0.284 4.376 2.210 0.283 3.404 1.738 0.275

2.5e-4 2.0e-4 1.5e-4 1.0e-4 0.5e-4
lambda

3.96

3.97

3.98

3.99

RM
SE

distance in Taxi dataset

(a) λ in Taxi dataset

7e-5 6e-5 5e-5 4e-5 3e-5
lambda

1.090

1.092

1.094

1.096

1.098

1.100
RM

SE

distance in Bike dataset

(b) λ in Bike dataset

Fig. 7: Effect of λ. We explore the influence of λ in the spatial
contrastive learning.

TABLE 10: Efficiency Evaluated on the P1 dataset. The entire
model UrbanSTC and its four components have been tested
separately.

Method Params Training Time Inference Time Total Time RMSE

VDSR 4.79M 4.37s 0.76s 9.10mins 4.054
SRResNet 5.79M 11.4s 1.57s 33.25mins 4.079

IMDN 2.63M 4.21s 0.69s 13.33mins 4.085
SCN 18.55M 23.86s 5.21s 59.65mins 3.965

UrbanFM 5.94M 12.28s 1.80s 10.23mins 4.042
UrbanPy 11.28M 27.39s 11.89s 79.89mins 3.944

FODE 4.23M 14.05s 1.91s 17.56mins 4.002

Reg 0.03M 3.89s - 6.48mins -
Inf 1.41M 0.80s - 1.60mins -

TCS 0.16M 0.99s - 1.65mins -
Fine-tuning 1.98M 3.34s 0.66s 2.78mins 3.845
UrbanSTC 3.58M 9.02s 0.66s 12.51mins 3.845

5.2.4 Study on External Factor Fusion751

In reality, there are complicated external factors in the FUFI752

problem. In order to verify the effectiveness of the external753

information in our method, we introduce external factors754

and conduct experiments on TaxiBJ datasets with different755

time spans (P1-P4). We only compare our method with756

available baselines. As test shown in Table 9, we clearly757

see that UrbanSTC+E performs better than other models758

across all time spans, which reveals that the combination of759

our UrbanSTC and external factors can improve the model760

performance. Note that, even some compared FUFI methods761

have the well-designed external information fusion module,762

our proposed method UrbanSTC can leverage external in-763

formation with a simple network.764

5.2.5 Configurations and Parameters Analysis765

In this section, we try to explore the learning abilities of our766

method in various setting environments. Compared with767
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Fig. 8: Study on Configurations. The convergence rate loss
error of the self-supervised module under different channel
dimensions
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(b) Model parameters comparison

Fig. 9: Study on Parameters. Experiments on the P1 dataset
with different training data fractions and the comparison of
parameter cost.

different channels (32, 64, 128), we can get the results shown 768

in Figure 8. Figure 8(a) illustrates that the larger number of 769

channels, the better performance of UrbanSTC. Besides, Fig- 770

ure 8 (b), (c) and (d) show that a larger number of channels 771

can improve the efficiency of the learning convergence. 772

We analyze the influence of λ in the regional-level 773

contrastive learning. Figure 7a shows the different per- 774

formances with a varying setting of λ. The regional-level 775

contrast judges which regions are positive and negative 776
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TABLE 11: The average RMSE, MAE and MAPE on BikeNYC dataset with different proportions of training data. The best
results are bold and the second best are underlined.

Methods
BikeNYC(20%) BikeNYC(40%) BikeNYC(60%) BikeNYC(80%) BikeNYC(100%)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
MEAN 3.776 1.281 3.776 1.281 3.776 1.281 3.776 1.281 3.776 1.281

HA 1.498 0.359 1.476 0.355 1.511 0.365 1.506 0.364 1.502 0.364
SRCNN 1.419 0.452 1.306 0.421 1.228 0.373 1.201 0.364 1.262 0.413
ESPCN 1.458 0.489 1.432 0.495 1.302 0.402 1.322 0.451 1.295 0.411
VDSR 1.888 0.838 1.740 0.758 1.616 0.700 1.531 0.665 1.476 0.626

SRResNet 1.843 0.891 1.713 0.781 1.607 0.712 1.488 0.643 1.443 0.600
LapSRN 1.582 0.635 1.448 0.550 1.392 0.516 1.339 0.492 1.320 0.464
IMDN 1.407 0.521 1.345 0.456 1.292 0.447 1.241 0.422 1.220 0.402
SCN 1.331 0.424 1.276 0.404 1.191 0.356 1.200 0.362 1.162 0.332

UrbanFM 1.405 0.316 1.302 0.309 1.215 0.283 1.215 0.265 1.172 0.263
UrbanPy 1.381 0.315 1.310 0.301 1.271 0.286 1.200 0.273 1.126 0.250

FODE 1.293 0.302 1.214 0.279 1.167 0.265 1.146 0.258 1.134 0.253
UrbanSTC 1.267 0.276 1.191 0.257 1.146 0.246 1.107 0.239 1.093 0.236

∆ +2.01% +8.61% +1.89% +7.89% +1.80% +7.17% +3.40% +7.36% +2.93% +5.60%
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Fig. 10: Convergence rate of different methods.

samples based on the threshold λ. The experimental result777

shows that the best result is achieved when the threshold is778

1e-4 on the taxi dataset. Figures 7b represents that λ = 5e-5779

yields the best performance.780

For the parameter analysis, Figure 9a represents that781

UrbanSTC can get better results than other models with782

different training data fractions. Figure 9b indicates the783

traditional image super-resolution methods, e.g.,, IMDN,784

VDSR and SRResNet are not suitable for the FUFI problem785

due to the inherent difference. Although SRResNet and Ur-786

banFM have similar structures, the M2-Normalization layer787

in UrbanFM contributes to the FUFI problem. UrbanPy uses788

a cascading model for forecasting fine-grained urban flows789

by decomposing the original task into multiple subtasks,790

which leads to the increase of computing complexity. FODE791

utilizes ODE module to replace the ResNet strucure in792

the UrbanFM. Because the above modules can be viewed793

as a discretization of a continuous ODE operator, which794

greatly improves the convergence speed and reduces the795

number of parameters. For our model UrbanSTC, we design796

several self-supervised pretext tasks to make encoders rich797

in spatio-temporal information. As shown in Table 10, “Reg“798

indicates the regional-level contrast pre-training; “Inf“ il- 799

lustrates the spatial super-resolution inference network; 800

“TCS“ denotes the temporal contrast. UrbanSTC consists 801

of three self-supervised modules and a fine-tuning stage. 802

The parameter cost of UrbanSTC is slightly higher than 803

IMDN because the latter is a lightweight image super- 804

resolution method designed in mobile devices. Based on our 805

well-designed self-supervised tasks, UrbanSTC can capture 806

spatio-temporal knowledge in advance and perform better 807

than other baselines with a relatively small amount of 808

parameters. 809

We further conduct a comparison between UrbanSTC 810

and baselines in terms of the training time and inference 811

time. We reported the training time of each epoch and the 812

total training time until model convergence in P1 dataset of 813

TaxiBJ, which contains 1530 training snapshots and 765 test 814

snapshots respectively. Even our model contains two stages, 815

the training time of each epoch is less than all previous 816

FUFI models (UrbanFM, UrbanPy and FODE) as shown in 817

Table 10. It is mainly because the structure of proposed 818

encoders is simple while well-designed that can capture 819

rich spatio-temporal characteristics in advance. Two image 820

super-resolution methods, VDSR and IMDN are efficient in 821

the training process, yet their performances are far more 822

worse than our method. 823

As shown in Fig.10, UrbanSTC can efficiently converge 824

with a small number of epochs. Even UrbanSTC spent 825

slightly more total training time than UrbanFM and VDSR, 826

it is efficient with the best results achieved. In summary, 827

extensive experiments demonstrate that UrbanSTC can 828

achieve the best results efficiently by using a small amount 829

of parameters. 830

5.3 Results on BikeNYC 831

Table 11 presents the comparison results on the BikeNYC 832

dataset. Since we cannot get the external factors of this 833

dataset, we will do not add such information in the experi- 834

ments. In this experiment, the baseline DeepSD will be the 835

same as SRCNN when M is 2×, therefore we remove the 836

DeepSD. 837

BikNYC dataset is more sparse than TaxiBJ dataset. 838

Nonetheless, UrbanSTC still yields 2.93% and 5.60% im- 839
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(a) Coarse-grained Crowd Flows (b) Fine-grained Crowd Flows (c) UrbanSTC Fine-grained Inference

Fig. 11: Visualization of crowd flows in BikeNYC.
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FODE UrbanSTC

A

B

C

D

Fig. 12: Visualization for inference errors among different
methods on P1 dataset. Best view in color.

provements on average in terms of RMSE and MAE, respec-840

tively. Note that due to the extremely sparsity of BikeNYC841

dataset, the metric MAPE is not available. It is apparent842

that the experimental results lead to similar conclusions to843

the test on TaxiBJ. The proposed model outperforms other844

baseline methods on both sparse and dense datasets, which845

has a good robustness.846

5.4 Visualization of Fine-grained Flow Prediction847

Figure 11 gives an intuitive presentation of the fine-grained848

urban flow prediction in BikeNYC data. Figure 11 (a) repre-849

sents the coarse-grained crowd flows and (b) is the ground-850

truth of the fine-grained flow map from (a), and (c) is our851

prediction result. This visualization illustrates the effective-852

ness of our model.853

Figure 12 shows the inference errors
∥∥∥Xf − X̂f

∥∥∥
1,1

gen-854

erated by UrbanSTC and the other three baselines for a855

sample at the 4× task, where a brighter pixel indicates a856

large error. Overall, UrbanSTC has obtained more detailed857

inference effects and less global error. To better visualize858

the quality of inference, we select four busy subregions859

(A, B, C and D) where the UrbanSTC performs better than860

other methods obviously. Area A is the Sanyuan bridge (the861

main entrance to downtown); area B is the Beijing zoo (a862

large number of tourists); areas C and D cover the Beijing 863

and Beijing west railway stations. Compared with existing 864

FUFI methods, we observe that UrbanSTC has made great 865

improvements in the above areas. Besides, UrbanSTC shows 866

a darker tone than other methods from the heat map, which 867

corresponds to the quantitive results from Table 3. 868

6 CONCLUSION 869

In this paper, we propose a spatio-temporal contrastive self- 870

supervision method named UrbanSTC for the fine-grained 871

urban flow inference problem. Our model can extract rich 872

spatial and temporal characteristics from urban flows. In 873

detail, we establish self-supervision pretext tasks from two 874

aspects, that are spatial and temporal correlations. For 875

the spatial correlation, regional contrast and spatial super- 876

resolution inference network make great contributions to 877

capture similarities among regional-level flows and upscal- 878

ing patterns. Moreover, we devise two sampling strategies 879

based on temporal attributes. The overall architecture of our 880

model obeys the self-supervised training mode: pre-training 881

& fine-tuning. Through well-designed self-supervised tasks, 882

uncomplicated networks have a strong ability to learn high- 883

level representations from urban flows. We conduct inten- 884

sive experiments on two real-world datasets to compare the 885

performances between UrbanSTC and other state-of-the-art 886

approaches. The results not only show that our approach 887

outperforms all other methods, but also represent a high 888

performance when the training data decrease. 889
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