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Forecasting the fire risk is of great importance to fire prevention deployments in a city, which can reduce loss even deaths
caused by fires. However, it is very challenging because fires are influenced by many complex factors, including spatial
correlations, temporal dependencies, even the mixture of these two and external factors. Firstly, the fire risk of a region is
influenced by temporal effect of internal factors (e.g., the historical fire risk records) and temporal effect of external factors
(e.g., weather). Secondly, a region’s fire risk is not only influenced by its inherent geospatial attributes (e.g., POIs) but also
dependent on other regions in spatial. To address these challenges, we propose a machine learning approach to forecast
the fire risk, entitled NeuroFire. NeuroFire can represent internal and external temporal effect then combine the temporal
representation and spatial dependencies by a spatial-temporal loss function. Experimental evaluations on real-world datasets
show that our NeuroFire outperforms 9 baselines, demonstrating the performance of our approach by several visualizations.
Moreover, we implement a citywide fire forecasting system named CityGuard to display the analysis and forecasting results,
which can assist the fire rescue department in deploying fire prevention.
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Fig. 1. Fire incidents distribution in the world. The picture is created with datamap (https://datamaps.co/).
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1 INTRODUCTION
Urban fires occur primarily in cities or towns, causing much financial loss, many injuries and even deaths. The
International Association of Fire and Rescue Services (CTIF)1, the largest firefighting organization in the world,
reported that there were 3,115,061 fires across 34 countries in 2017 (as shown in Fig.1), which caused 47,948
injuries and 16,808 deaths. In particular, 53.2% of fires are structure and vehicle fires, which mainly happened in
urban areas. For example, on April 15th 2019, a major fire engulfed the Notre-Dame de Paris2 as shown in Fig.1.
People from all over the world expressed sadness for the damage of treasures. As China urbanizes rapidly, fire
and rescue departments face greater and greater challenges in reducing the risk that urban fires pose to public
safety and residents’ lives and property, all the more given their often limited resources. In 2018 alone, there
were 237,000 fires, causing 1,407 civilian deaths, 798 civilian injuries and 3.675 billion RMB in property damage.
For instance, on August 25th 2018, a fire broke out in a hotel in downtown Harbin3 as shown in Fig.1, killing 20
people and injuring more than 20 people. Therefore, the threat that urban fires pose to public safety cannot be
overlooked. To reduce the loss caused by fires, it is necessary to forecast the fire risk of each region in space,
which we partition into grids. If fire and rescue departments can identify the regions with the highest fire risk,
they can best deploy their limited resources to prevent urban fires.

As far as we know, there are few works about forecasting fire risk in urban areas. Existing work [22, 29] focused
on predicting the fire risk without adding a temporal dimension to the risk prediction, which is less useful for
fire and rescue departments. To meet this temporal requirement, we face some challenges because the fire risk of
each grid (e.g., dividing a city into 1km×1km) in the city is influenced by various factors:
(1) Temporal effect. The fire risk of a grid is influenced by internal temporal effects (e.g., historical fire risk).

the fire risk will be high if the historical fire risks are high. The fire risk is also correlated to the external
temporal effects (e.g., temperature, humidity, E-commerce orders). Some of external temporal effects have an
immediate impact. For example, the fire risk will increase when the temperature is high or the humidity is
low. And some of them have a delayed impact. For example, the fire risk will not increase immediately when

1www.ctif.org
2https://en.wikipedia.org/wiki/Notre-Dame_de_Paris_fire
3https://en.wikipedia.org/wiki/Harbin_hotel_fire
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electronic orders increase, but will rise as more people uses these devices simultaneously. The analysis is
detailed in Section 2.2. Therefore, we should integrate the internal temporal effects and external factors to
find the relationship between temporal effects and fire risk.

(2) Spatial factors. Local spatial attributes and global spatial dependencies are both correlated to the fire risk
of grids. Local spatial attributes (e.g., POIs, human activities, population of area) infer the inherent attributes
of the grid. For instance, fires are more likely to break out in a grid when the POI categories is diverse, which
increase the crowd flow in the grid. Besides local spatial attributes, global spatial dependencies characterize
the distribution of fire risk across the city. In the spatial dimension, some regions always have high fire
risk, but the fire risks of some regions always stay low. The analysis is detailed in Section 2.2. To forecast
the fire risk of each grid, we need to incorporate spatial attributes and dependencies into our model.

To address these challenges, we propose a machine learning approach named NeuroFire to forecast the fire
risks of grids in two steps: temporal fire classification and spatial fire risk forecasting. In this paper, we define the
fire risk as the probability of fires in a month. We leverage the GRU-CRF [15] (combining Gate Recurrent Unit [6]
and Conditional Random Field [19]) model to represent the relationship of historical fire incidents and capture
the immediate and delayed temporal impact of urban factors. We then combine the temporal representation and
spatial dependencies of grids by designing a spatial-temporal loss function. The main contributions are as follows:
(1) We propose a citywide fire forecasting model named NeuroFire which utilizes GRU to learn temporal

representations of urban data and integrate the temporal representations into fire risk sequences by CRF.
(2) We design a spatial-temporal loss function, which is used to model spatial dependencies between grids.
(3) We conduct experiments on real-world datasets collected from Zhengzhou, China. Evaluation results

demonstrate that NeuroFire significantly outperforms 9 popular baselines. In addition, we develop a system
named CityGuard to visualize the analysis and results.

2 DATASETS AND DATA ANALYSIS

2.1 Datasets
In this paper, we analyze and forecast the fire risk in Zhengzhou, China. We collected the following 4 real-world
datasets from Jan. 2014 to Nov. 2018 as following:

• Fire records: We obtained fire records in Zhengzhou, Henan province from the Henan fire and rescue
department. The dataset consists of location (latitude and longitude) and time of a fire. We divide Zhengzhou
into grids. For example, there are 5472 grids when grids size is 1km×1km. Over 96% grids in city (5472
grids in total) are without fires in each month. For each grid, fires only occur in average of 2 months during
59 months.

• POIs: We obtained our POI dataset from OpenStreet Map4, which contains the categories and locations of
POIs.

• Meteorology:We crawled temperature and humidity from Weather China5 for each day, and calculated
average temperature and humidity for each month.

• E-commerce orders: E-commerce orders’ information is indicative of fire risk. Firstly, electrical and
mechanical failure is a main classification of fires [16]. Too many electronic products will result in overuse
of electric power, which is one of major factors causing fires. The increasing number of electronic products
will be found in the increasing E-commerce orders of electronic products. Secondly, orders’ information
is a useful feature to forecast fire risk. Existing work used parcels information as address-level features
[29]. Our E-commerce dataset, which also has parcels information (orders information), contains the order

4https://www.openstreetmap.org/
5http://www.weather.com.cn/
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Fig. 2. Trend of all item orders and electronics
orders

Fig. 3. Correlation between the current fire risk and historical fire
risk

number of electronics (electronic orders) and the order number of all products in each grid for every month,
which are correlated with fire incidents in temporal and spatial as following illustration in Section 2.2.
Due to the lack of data on electronics orders in some grids, we made use of all-item orders to impute the
electronics orders because they have a similar trend as shown in Fig.2.

2.2 Data Analysis
The number of fire incidents is impacted by several factors. In this section, we analyze two categories of factors:
temporal effects and spatial factors.
Temporal Effects. Temporal effects consist of two types: internal temporal effects (e.g., historical fire incidents)

and external temporal effects (e.g., temperature, humidity and electronics orders).
Internal temporal effects. To determine whether historical fire risk will impact the current fire risk, we observe

the correlation between the number of fire incidents in Nov. 2018 and the number of fire incidents in each month
before Nov. 2018. The correlation is shown in Fig.3. The points with red edge mean significant correlation. We
find some periodic impact on the number of fire incidents in Nov. 2018, with period of approximately 18 months.
The two most recent months have the largest impact, while more distant months have smaller impacts on the
number of fire incidents in Nov. 2018. These findings inform our determination of the sequence length of historical
information.
External temporal effects. We use three external temporal effects, which will influence the number of fire

incidents, including temperature, humidity, and the number of electronic orders. The changes of these three
factors and the number of fire incidents are shown in Fig.4. We analyze their impact as follows:
1) Immediate impact. From Fig.4(a), 4(b), 4(c) and 4(d), we learn that summer and winter each year are high-

incidence seasons. Temperature and humidity seem to have an immediate impact. High temperature and high
humidity appear to lead to more fires in summer as shown in the red areas in Fig.4(a) and Fig.4(b). This seems to
contradict our common sense. The reason is that Henan province in China has a temperate continental climate.
Higher temperatures in the summer are accompanied by higher humidity levels. On other hand, though the
temperature is lower in winter, there is low humidity and an increased rise of fire startings in the dry air.
2) Delayed impact. Compared to the immediate impact of temperature and humidity on the number of fire

incidents, the number of electronic orders has a delayed impact. From Fig.4(e), we find that the number of fire
incidents increases after the electronic orders increasing. Because the peak of electricity use will come after the
number of electronic products increasing. For example, numerous people buy air conditioners before summer.
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(a) Change in fire incidents and tempera-
ture in summer

(b) Change in fire incidents and humidity
in summer

(c) Change in fire incidents and tempera-
ture in winter

(d) Change in fire incidents and humidity
in winter

(e) Change in fire incidents and electronic
orders

Fig. 4. Change in number of fire incidents and several temporal effects

But they use them in one or two months. From the red area and green area in Fig.4(e), we learn that the delay is
about 3 months. It means that the increase in electronic orders precedes the increase in fire risk by three months.
The increases in orders reflected in the red and green areas result in different patterns of increase in incidents of
fire because the number of fire incidents is affected by several factors.
Spatial Factors Spatial factors include local spatial attributes and global dependencies.
Local spatial attributes. Local spatial attributes (e.g., POI) will affect the fire risk at each timestamp and

differentiate grids. For example, POIs are related to the crowd flow. And orders will reflect the usage of electricity
consumption. As we all known, if there are more people or more electricity consumption in a grid, the possibility
of fire risk will be high.
To analyze the relationship between the number of fire incidents and the poi diversity, we first counted the

number of poi categories in each grid. Then we calculated the mean fire incidents of grids whose number of

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 156. Publication date: December 2019.
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(a) Correlation between POI categories and fire incidents

(b) Changes of fire incidents with increasing
number of poi categories in Jan. 2014

(c) Changes of fire incidents in spatial with
different number of orders in Jan. 2014

Fig. 5. Relationship between poi categories and the number of fire incidents in spatial

(a) The distribution in March 2018 (b) The distribution in April 2018 (c) The distribution in May 2018

Fig. 6. The distribution of fire incidents varying from time

categories are same. Fig. 5(b) displays the changes of fire incidents number when the number of poi categories is
increasing. Obviously, grids with increasing number of categories are easy to break out of fires. The reason may be
that these grids draw more people, which increase the possibility of fire incidents. Meanwhile, we calculated the
correlation between the number of each POI categories and the number of fire incidents as shown in Fig.5(a). The
top five correlated POI categories are Food & Beverages, Medical, Life Service, Commercial House, Governments
& Social groups. We also analyze the relationship between the number of orders and the number of fire incidents
at one timestamp, using the same method with analyzing the number of POI categories. As shown in Fig. 5(c), we
learn that the grids with more electronics orders are easier to break out of fires. The reason could be that more
electronics will cause overuse of electric power, which results in fires.
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Table 1. Mathematical Notations

Symbol Description
A = {ai }

n
i=1 a set of grids in the city

Nt = {Nt,i }
n
i=1 The fire records at t timestamp

Yt = {yt,i }
n
i=1 The fire risk of each grid at t timestamp

Xt = {xt,i }
n
i=1 The features of each grid at time stamp

Mt = {m
temp
t ,mhum

t } Meteorology features including temperature and humidity at t timestamp

Ct = {clt,i , c
e
t,i }

n
i=1

The features of E-commerce for each grid at t timestamp
including all item orders and electronic orders

S = {si }
n
i=1 Spatial features (e.g., POI) for each grid

Global spatial dependencies. The distribution of fire incidents across the city demonstrates global dependencies
that do not change significantly with time. Fig.6 shows the distribution of fire incidents in three adjacent months.
Obviously, the regions in the center of the figures always have high fire risk and fires seldom break out in the
regions in the margin of figures. We can leverage the fire risk difference between grids to discriminate the fire
risk of grids across space.
From the analysis above, we find that the number of fire incidents is influenced by the combined action of

immediate impact and delayed impact. Even when temperature is low and humidity is high, reducing the fire
risk, fires will break out in some grids, notably those with highly correlated POIs or an increasing number of
electronic orders. It is challenging to represent such complex factors jointly. We need to integrate the internal
and external temporal effects to represent the changes of fire risks along a temporal dimension. Meanwhile, we
should consider the spatial dependencies to learn the fire risk distribution in space at each timestamp.

3 PROBLEM STATEMENT
In this paper, we use features of last several timestamps to forecast the fire risk of current timestamp. We briefly
define our problem as following:
Definition 1: We partition the region of a city into n grids (e.g., 1km×1km) A = {a1,a2, ...,an} based on

latitude and longitude as shown in Fig.6.
Definition 2: At the t th timestamp, the number of fire incidents in each grid is {Nt,i |Nt,i ≥ 0, i = 1, 2, ..,n}.

Then we sort these grids in ascending order and normalize the index to (0,1). Let the normalized results {yt,i |i =
1, ..n} denote the fire risk assigned to the grids, which is defined as following:

yt,i < yt, j i f Nt,i < Nt, j
yt,i = yt, j i f Nt,i = Nt, j
yt,i = 0 i f Nt,i = 0

(1)

where yt,i ∝ Nt,i . The effects of features are also proportional to the fire risk. Therefore, the analysis in Section
2.2 can also be applied in fire risk.
Definition 3: We extract spatial-temporal features {X1, ...,Xt }. For each timestamp tk , Xtk = {Mtk ,Ctk , S},

where Mtk ,Ctk , S is defined in Table 1. To extract the features, we normalize the value of Meteorology (e.g.,
temperature, humidity), E-commerce data(e.g., the number of electronic orders and all item orders) and spatial
features (e.g., the number of POI categories) to (0, 1) respectively.
Given a ∆t period of historical fire risks {Yt−∆t , ...,Yt−1} and spatial-temporal features {Xt−∆t , ...,Xt−1}, we

forecast the t th timestamp fire risk Yt .
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Losstemporary

Lossspatial
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GRU

Feature Extraction and Fusion

E-commerce Data POIMeteorology
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CRF

GRU GRU
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Fig. 7. Architecture of NeuroFire.

4 FIRE RISK FORECASTING MODEL
Because of the difficulties of forecasting on such a sparsity datasets, we propose a machine learning model
named NeuroFire to integrate the temporal and spatial (Shown in Fig.7), which consists of two-step: temporal fire
classification and spatial fire risk forecasting .

4.1 Temporal Fire Classification
From the data analysis, we learn that the current fire risk is affected by two kinds of effects from temporal
view: internal temporal effects and internal temporal effects (as mentioned in Section 2.2). The internal temporal
effects shows the correlation with historical fire risks. And the internal temporal effects influence the fire risk by
immediate impact and delay impact. To forecast the current fire risk, we use GRU-CRF [15] to combine these two
kinds of factors. Specifically, we first use GRU to learn temporal representation of internal temporal effects and
use CRF to combine the internal internal temporal effects and temporal representation.

Recently, CRF achieves success in temporal sequence inference in urban, such as crime forecasting [37] and air
pollution forecasting [43]. Different from linear HMM depending on the last state, CRF depends on the sequence
before, which avoid label bias. A linear Conditional Random Field (CRF) combines these two kinds of factors by
building an undirected graph. Additionally, CRF has the capacity of avoiding label bias, which is helpful for our
problem. Because the label number of no fires is much greater than the label number of fires. If label bias happens,
the most fires labels will be forecasted as no fire. Due to sparsity of fires labels, we transform regression problem
to binary classification. It means that we will forecast whether there are fires in grid i , which is denoted by I (·),
where I (y) = 1, i f y > 0 and I (y) = 0, otherwise . The probability of I (yt,i ), which represents the fire risk of grid
i , given urban features Dt,i = {xt−∆t,i , ...,xt−1,i } and historical fire risk {yt−∆t,i , ...,yt−1,i } is defined as (2).

P(I (yt,i )|Dt,i ) =
1

Z (Dt,i )
exp

(∑
p

αp fp (I (yt,i ),Dt,i ) +

t−1∑
k=t−∆t

∑
p

βpдp (I (yk+1,i ), I (yk,i ),Dt,i )

)
(2)
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where fp and дp are linear functions. Z (Dt,i ) is a normalization factor. All grids share the parameters.
However, some of urban features cannot directly effect the current result because of the delay. Therefore, We

leverage Gate Recurrent Unit (GRU) to address this problem, which has been employed in a variety of sequential
learning works. The GRU can explore long-range temporal dependencies by maintaining or forgetting a memory
based on historical information. Compared to LSTM, it is lightweight and efficient. This idea fits our problem. For
example, some features like the number of orders have some delays on affecting fire risk. On the other hand, fire
risk will increase in the short term when temperature and humidity are high. The hidden output ht,i ∈ RH1 is
temporal representation of Dt,i , which is calculated by (3) given Dt,i :

ht−∆t+1,i = GRU (xt−∆t,i )

...

ht,i = GRU (xt−1,i ,ht−1,i )

(3)

After computing the hidden output, we need to calculate the emission probability of each dimension as the
input of CRF. To fit the input of CRF, we let ht,i go through two full connection layers as following:

o1t,i = wf c1 · ht,i + bf c1

o2t,i = wf c2 · o
1
t,i + bf c2

(4)

wherewf c1 ∈ RH2×H1 , bf c1 ∈ RH2 , o1t,i ∈ RH2 ,wf c2 ∈ R2×H2 , bf c2 ∈ R2, o2t,i ∈ R2. Each full connection is used to
reduce the dimension of ht,i , which means H2 < H1.
Through the GRU and full connection layers, we transform the Xt,i into o2t,i , which including a ∆t period of

information. Combining GRU and CRF, we re-formulate (2) as following:

P(I (yt,i )|Dt,i ) =
1

Z (Dt,i )
exp

(∑
p

αp fp (I (yt,i ),o
2
t,i ) +

t−1∑
k=t−∆t

∑
p

βpдp (I (yk+1,i ), I (yk,i ),o
2
t,i )

)
(5)

where P(I (yt,i ) = 1|Dt,i ) is the probability of that there are fires, which means fire risk.
The loss function in temporal fire forecasting is motivated by MLE as following:

Losstemporal = argmax P(I (yt,i )|Dt,i ) (6)

4.2 Spatial Fire Risk Forecasting
Though temporal fire forecasting calculates the fire risk (probability) of fires for each grid, the fire risks of grids
are independent. The probability of fires cannot provide evidence of discriminating fire risk of grids at one
timestamp. To learn spatial dependencies, we need to consider the fire risk differences among grids.

This problem is similar to the ranking problem in the recommendation system. In order to recommend products
for users, Rendle et al. [27, 28] proposed S-BPR method to discriminate products by partitioning products into
two sets: the products that are preferred by users and other products.

However, there is a difference from the problem and the product recommendation that we need to forecast fire
risks of the grids at the t th timestamp. Inspired by S-BPR [27, 28], we transform the fire risk forecasting problem
into a pair-wised comparison in spatial. For each grid i , other grids can be classified into two classes. The one
class contains the grids that the fire risks are greater than the grid i . The other one contains remaining grids.

For example, as shown in Fig.8, Yt are fire risks labels for grids at the t th timestamp. We transform the metric
for Yt into a n × n metric rt , which is a label for dependencies between grids, where rt (i, j) = 1, i f yt,i > yt, j
and rt (i, j) = 0, otherwise . Similar to the operation for fire risks labels, the dependencies of forecasting scores is
r̂t (i, j) = 1, i f pt,i > pt, j , where pt,i = P(ŷt,i = 1|xt−1). ŷt,i ∈ {0, 1} represents the forecasting result of whether
there are fires at the t th timestamp. These two dependencies metrics are calculated by (7).
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Fig. 8. Illustration of spatial dependencies

rt = I

( [
YTt −1

] [
1
Yt

] )
r̂t = σ

(
[ pT −1 ]

[
1
p

] )
(7)

We adopt cross entropy as the objective function in spatial fire risk forecasting in (8). This step is used to adjust
pt,i , which makes the fire risks rank sorted by pt,i close to the fire risks rank sorted by fire risk in real world.

Lossspatial = argmax
∑
k

∑
l

rt (k, l) log(r̂t (k, l)) + (1 − rt (k, l))loд(1 − r̂t (k, l)) (8)

Finally, we combine the Lossspatial and Losstemporal to forecast fire risks of grids at the t th timestamp. The
actual objective function we optimize is Lossst = Losstemporal + Lossspatial

5 EXPERIMENT

5.1 Experiment Setup
We conduct experiments on dataset including 59-month fire incidents and urban data as described in Section
2.1. We divided Zhengzhou into 1km×1km grids (5472 grids). Over 96% grids have no fires in each month. For
cross validation, we use a sliding window to divide the dataset into train sets, validation sets and test sets along
the time sequence. The time length of the window are 49 months, including 42 months for train set, 6 months
for validation set and 1 month for test set. For example, if we forecast the fire risk in November 2018 (test set),
the train set is from November 2014 to April 2018 and the validation set is from May 2018 to October 2018. In
experiments, we forecast the fire risk in 11 different months (January 2018 to November 2018). Due to small
dataset, we use only one GRU layer. When train the model, we select Adam [18] optimizer. Meanwhile, we set
the hidden size of GRU unit as 32 and set the learning rate as 0.001.

5.1.1 Metrics. We use three metrics to evaluate our model: F1-score, AUC and MAE as following:

F1 − score = 2 ·
precision · recall

precision + recall
(9)

precision =

∑n
i Im (pt,i > P(ŷt,i = 0|xt−1) ∧ yt,i > 0)∑n

i Im (pt,i > P(ŷt,i = 0|xt−1))
, recall =

∑n
i Im (pt,i > P(ŷt,i = 0|xt−1) ∧ yt,i > 0)∑n

i Im (yt,i > 0)
(10)

where Im(·) is indicative function. Im(s) = 1, if s is True and Im(s) = 0,otherwise .

AUC =
1

|E(t)|

∑
i, j ∈E(t )

Im(ŷt,i > ŷt, j ), E(t) = {(i, j)|I (yt,i ) > I (yt, j )} (11)

MAE =
1
n

n∑
i

|yt,i − pt,i | (12)
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(a) Recall (b) AUC (c) MAE

Fig. 9. Impact of the length of period under different loss function. (Loss_t represents Losstemporal .)

5.1.2 Baseline models. To evaluate NeuroFire, we select 9 baselines models. All baselines as following were run
10 times:

• CRF: Conditional Random Field model leverages transition probabilities between labels in sequence and
emission probabilities from features to labels in order to calculate the score of labels.

• LASSO: Least absolute shrinkage and selection operator model is a regression model which fits the problem
of forecasting fire risks of grids.

• SVM [9]: Support vector machine is always used in classification, which performed best in Firebird [22],
which is a work about fire risk prediction. We only use features of one timestamp for SVM.

• SVM-P: To find whether long-term features improve the performance of SVM, we concatenate 2 months
of features for SVM named as SVM-P.

• LR: Logistic regression model is always used for classification.
• LR-P: Similar to SVM-P, we concatenate 2 months of features as input of LR.
• GRU [6] (GRU-LR): We implement GRU to fit our two-step method. The hidden output is contributed to
the input of LR, which transforms LR into a sequential learning model by using GRU to learn temporal
delays.

• GRU-CRF [15]: It has the similar architecture as our model, but ignore spatial dependencies.
• DeepST [40]: It divides the time series into three types of temporal components: closeness, period and
trend, extracts spatial features at each timestamp of each components by CNN.

5.2 Performance For Period of features
The fire risks at the t th timestamp are contributed by historical fire risks sequence and urban feature in a ∆t
period. The length of the period determines the richness of historical information. Because the longer period
resulting in richer or more useless information is unknown We evaluate the length of the period to find the
appropriate ∆t .

We select 4 different values (2, 5, 8, 11) for ∆t , and evaluate them under two different loss function (Losstemporal
and Lossst ). The results are shown in Fig.9. With increasing length of period, the performance of our model under
two loss functions both go down. The results infer that historical sequence and urban features contain some
useless information even some noise when the length of period is long. When ∆t = 2, our model under two
different loss functions both reach the best result. These results show that the fire risks for current month are
significantly related to the two most recent months as mentioned in Section 2.2.
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Table 2. Comparison with baseline models

Model Recall F1-score AUC MAE
LASSO 0.202±0.306 0.025±0.014 0.454±0.075 0.411±0.265
CRF 0.263±0.075 0.349±0.071 0.629±0.037 0.807±0.005
LR 0.333±0.59 0.324±0.059 0.659±0.052 0.249± 0.036
LR-P 0.179 ±0.188 0.121±0.058 0.573±0.072 0.162±0.019
SVM 0.540±0.273 0.087±0.038 0.56±0.096 0.498±0.224
SVM-P 0.308±0.066 0.227±0.085 0.629±0.031 0.267 ±0.097
GRU-LR 0.342±0.101 0.365±0.102 0.666±0.076 0.146± 0.0139
GRU-CRF 0.284±0.111 0.387±0.071 0.673±0.06 0.100±0.003
DeepST 0.532±0.070 0.310±0.080 0.740±0.037 0.193±0.092
NeuroFire 0.558±0.134 0.400±0.067 0.763±0.045 0.094±0.01

(a) Recall (b) AUC (c) MAE
Fig. 10. Comparison with models using two loss functions. (Loss_t represents Losstemporal .)

5.3 Performance of Our Model
5.3.1 Comparison with different baselines. Table 2 shows the performances of our model (NeuroFire) and baseline
models. The results in table are mean and standard deviation after running 10 times. Baseline models except
DeepST are trained by adding Lossspatial because they don’t consider spatial dependencies. Our model produces
the best performance. From the results, DeepST doesn’t perform good on the situation that spatial distribution is
sparse, which makes difficult to train CNN. Moreover, DeepST is a much more complicated model that needs
bigger datasets to train. GRU-LR and GRU-CRF perform better than LASSO, CRF, LR and SVM. Because GRU-LR
and GRU-CRF consider temporal features. Though LR-P and SVM-P involve more than one timestamp of features,
they still perform worse than GRU-LR and GRU-CRF. Because GRU not only keeps long-term information but also
discards some useless information. In addition, GRU-CRF perform better than GRU-LR because of considering
historical sequence of fire risks. LASSO performs worst because the labels of fire risk are very sparsity. It makes
difficult to make regression. We check the results of forecasting using LASSO. Then we find that almost every
grid is forecasted as the same low risk even 0. Compared to LASSO, LR performs better in classification but
cannot do well in spatial distinction either. The results show that historical sequence and temporal delays are
both important to forecast the fire risks.

5.3.2 Performance for involving Lossspatial . To evaluate the impact of Lossst , we train our model (NeuroFire) and
4 baseline models (e.g., LASSO, CRF, LR, GRU-LR) by using two loss functions. Losstemporal for each baseline is
their own loss functions. Lossst for each baselines means that adding Lossspatial to Losstemporal . In particular,
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our model only using Losstemporal is GRU-CRF in baseline models. The results are shown in Fig.10. Compared
to models using Losstemporal , models using Lossst perform better in Recall, AUC and MAE. It infers that Lossst
improves not only the results of finding top risk but also the results of forecasting. In summary, models using
Lossst outperform than models using Losstemporal .

5.3.3 Performance on different situations. To evaluate the stability of our model, we conduct experiments on
different time scales and sizes of grids.
Performance on different time scales. The results for each month is shown in Fig.11. We conduct experi-

ments on seasonal data (three months data). 59 months are divided into 19 seasons. We also used a sliding window
to select train sets (12 seasons), validation set (1 season) and test set (1 season). We forecast the fire risk from the
14th season to 19th season as shown in Fig.12. Compared to forecasting monthly fires, our model performs better
on forecasting seasonal fires. Recall for seasonal forecasting is over 40%. It is because that the features of seasons
are more distinct than the features of months. From the results, we find that our model outperforms on both
month-level and season-level. Because we not only consider the long-term features but also involve the historical
fire risk sequence, which is useful to avoid label bias in such a sparse dataset.

(a) Recall (b) AUC (c) MAE
Fig. 11. Performance for each month. The number of grids with fires from Jan.2018 to Nov.2018 is 149, 124, 139, 122, 112, 87,
99, 125, 166, 176, 256.

(a) Recall (b) AUC (c) MAE
Fig. 12. Performance for each season. The number of grids with fires from 14th season to 19th season is 274, 230, 337, 441,
266, 195.
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(a) Recall (b) AUC (c) MAE
Fig. 13. Performance for each month when grids are small.

Table 3. Performance related to features

Features Recall F1 AUC MAE
w/omtemp

t 0.288±0.072 0.368±0.064 0.641±0.035 0.114±0.023
w/omhum

t 0.334±0.127 0.372±0.078 0.662±0.061 0.094±0.011
w/o clt 0.376±0.123 0.391±0.056 0.682±0.058 0.074±0.013
w/o cet 0.368±0.117 0.389±0.062 0.678±0.056 0.111±0.016
w/o S 0.362±0.141 0.373±0.068 0.675±0.067 0.06±0.006

m
temp
t +mhum

t + clt + c
e
t + S 0.558±0.134 0.400±0.067 0.763±0.045 0.094±0.01

Performance on different sizes of grids. To evaluate stability of our model, we also conduct experiments
on smaller grids which are 0.5km×0.5km (21080 grids in total). The sparsity for each month is over 98.2% As
shown in Fig.13, the performances of each model looks worse than results based on 1km×1km grids due to the
higher sparsity. Our model still performs better than other models.

5.4 Evaluation on Features
To find the feature which plays an important role, we study the performance of model by different combinations of
features as shown in Table 3. We learn that the performance is lowest when taking out one of the features. Recall
and F1 is significantly improved when involved temperature (mtemp

t ). Therefore, we believe that temperature
is easy to influence the fire risk. Humidity (mhum

t ) also plays an important role in determining fire risk. Recall
decreases 22.4% when taking humidity (mhum

t ) away.

5.5 Visualization of Results
Visualization for performances of Lossst.We demonstrate the result of our model when using Losstemporal
and Lossst as shown in Fig.14. Compared to using Lossst , our model using Losstemporal forecasts some wrong
risks for some grids, which will not break out of fires. In addition, the rank result when using Losstemporal is
not accurate. Many grids cannot be discriminated. In summary, the visual result supports the conclusion in
Experiment 5.3.2 that considering spatial dependencies improves the forecasting.

Visualization for results of models. The visualization for forecasting results of one month is shown in
Fig.17. The deeper color in a grid, the higher risk is forecasted. The results demonstrate that our model perform
better in forecasting. GRU-LR and LR outperform than CRF, LASSO and SVM. Though the visualization result of
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(a) Groundtruth in Jan. 2018 (b) The result when using Lossst (c) The result when using Losstemporal
Fig. 14. Demonstration the results of NeuroFire when using Losstemporal and Lossst .
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DeepST seems discriminating in spatial, it performs worse in forecasting. In summary, NeuroFire outperforms
other baselines in forecasting.

6 SYSTEM ARCHITECTURE
In order to proof government’s fire prevention and monitoring work, we develop a monitoring and forecasting
system to intuitively represent historical fire information and predictions of our model. The CityGuard’s system
framework consists of two major parts as shown in Fig.15: local servers and the Cloud.

Local Servers Local servers mainly handle the offline time-consuming training (learning), including three
tasks:

• Extract and construct features from urban database: we first extract a period of temporal and spatial features
for each grid then fit features to a feature construct module to get well-format features and store them in
local.

• Count historical fire records of each grid: we first collect the historical fire records from government and
apply a calculating module to get fire risk data for each grid, then store them in local.

• Training model: we use above fire risk data and features to train a forecasting model via our model, and
then upload the learned model to the Cloud.

The Cloud The Cloud continuously crawls meteorological data and monthly receives E-commerce data. After
extracting features from data, the Cloud stores them. With the learned model and new features data, the Cloud
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computes the fire risk for each and every grid of a city. The web service in the Cloud share a App Service to
visualize predicted fire risk.

Interface Fig.16(a) presents the website of our Fire Risk Forecasting System (CityGuard)6. The color of each
grid shows according to the degree of its fire risk, e.g., “yellow” represents “low” fire risk and “red” represents
“high” fire risk. The top-left corner of the website shows the input box with submit button in which the user can
type a number. This number represents the number of grids with the highest risk that user wants to focus on in
the whole grids list. For example, as shown in Fig.16(b), a heatmap with only top-10 highest fire risk grids has
shown if user inputs the number 10. A user can also click any grid with colors on the website to see the detail
information. Fig.16(c) presents charts of historical and forecasting fire detail information: the variation of fire risk
over time (at the top), the historical statistic of types of fire sites (at bottom-left), igniters (at bottom-center) and
causes (at bottom-right).

7 RELATED WORK

7.1 Forecasting in Urban Computing
Recently, urban data that is generated in cities (e.g., POIs, E-commerce data, APP data[24]) is widely used to
forecast urban states, such as air pollution forecasting [10, 20, 38, 43], site recommendation [4, 13, 21], mobility
forecasting [11, 12, 17, 35, 39–41], and crime prediction [5, 14, 42]. The various kinds of urban data show the
potential of assisting us with urban planning. To explore the laws of cities, many works propose temporal
models to characterize the dynamic changes of city. For example, Devarakonda et al. [10] leverage a sensing
device to measure carbon monoxide in order to predict pollution using linear regression. Xu et al. [34] represent
the temporal mode of each mobile user by partitioning their trajectories to explore the different life style of
users. Cao et al. [2] identify three main revisitation patterns based on check-in data. And they explore living
pattern by embedding trajectories [3]. Fang et al.[12] extract some features from multiple cellphone network
then fuse the population estimator for each network. With widely use of neural network, many works study
on spatial-temporal forecasting by combining Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN), which can reduce the effort of feature selection. Qin et al. [25] leveraged CNN to extract the
spatial features then learned temporal dependencies using LSTM. Shi et al. [32] extended the fully connected
LSTM to have convolutional structures in both the input-to-state and state-to-state transitions. The methods
perform well in urban computing. However, they use spatial features for each grid to forecast but do not consider
about the global spatial dependencies, which is used to determine the priority in rank list.

7.2 Urban Fire Risk Forecasting
Existing fire forecasting methods focus on building Risk-based Fire Inspection System. For early works, they
prioritized the inspection objects without temporal impact. The New York Mayor’s Office of Data Analytics
with the Fire Department of New York (FDNY) firstly developed a Risk-Based Inspection System (RBIS). They
constructed a data-driven fire forecasting model to identify and prioritize these property inspections according
to a set of buildings and behaviors information [8]. Lately, the “Firebird” was developed to identify and prioritize
commercial property inspections by involving more features of building-level [22, 23]. They utilized SVM and
random forest based on historical fire incidents data and commercial data to prioritize the commercial properties.
In fact, these existing works forecast the fire risk of several buildings based on but not temporal sequences of
features, which ignores some changes along time. To address this challenge, Singh Walia et al.[29] updated the
features weekly from various open sources. But they didn’t consider the dependencies of temporal sequence.

6The access of website: http://101.124.0.58:5000/. The interface of our system uses open source tools, such as Mapbox (www.mapbox.com)
and HighCharts (www.highcharts.com)
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Our work is different with existing works from two aspects. Firstly, the works above ignored the dependencies
between the temporal impact. We aim to characterize temporal dependencies from temporal features by RNN.
Secondly, different from existing works, we consider the spatial dependencies which are beneficial to prioritize
the area with top risk. Thirdly, existing works cost much time on feature engineering, for example, they extract
and analyze over 200 features. Such demanding pre-process is difficult to apply in city-scale. Compared to these
methods, our method can reduce such effort by using neural networks.

7.3 CRF Models in Spatial-temporal Forecasting
Conditional Random Field (CRF) [19] is mainly used in Natural Language Processing (NLP) [1, 7, 26] and computer
vision [33]. In last decades, CRF is widely used in urban computing due to the performance of spatial-temporal
forecasting. SGCRF [31] pruned redundant connection in fully connect CRF to forecast time-series energy. Wang
et al. [30] improved SGCRF by integrating RNN to learn temporal features. Yi et al. [36, 37] using a tree structure
clustering based on CRF to cluster high similar regions into groups, which was used to forecast the crime incidence.
Zheng et al. [43] leveraged CRF to model the temporal sequence as a part of spatial-temporal model. However, it
mainly deals with the temporal dependencies on the sequence of targets but not pays attention to the temporal
dependencies on the sequence of features, which is necessary in fire forecasting. For example, the continuous
increasing of electronic orders will result an increasing of fire risk.

8 CONCLUSION AND FUTURE WORK
In this paper, we first analyze the temporal (e.g., historical fire incidents, temperature and humidity) and spatial
factors (e.g., POIs) which impact on the fire risk. To forecast fire risk, we leverage GRU-CRF model to learn
temporal dependencies and design a spatial-temporal loss function to learn spatial dependencies at a timestamp.
We evaluate our model on a real-world fire incidents and compare with 9 baseline models. Meanwhile, we depict
the results of each models. The results show that our model outperforms 9 baseline models in fire risk forecasting.
From some existing works about fire risk analysis, we learn that many individual and group behaviors show

correlation the fire risk [16]. In the future, we will involve more urban data (e.g., consumption, crowd flows) to
discover more factors directed to fire risk and improve accuracy of our model.
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A VISUALIZATION OF RESULTS
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Fig. 17. Visualization of forecasting results
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